
ClickOS and the Art of Network Function
Virtualization

Joao Martins*, Mohamed Ahmed*, Costin Raiciu§, Roberto Bifulco*,
Vladimir Olteanu§, Michio Honda*, Felipe Huici*

* NEC Labs Europe, Heidelberg, Germany
§ University Politehnica of Bucharest

firstname.lastname@neclab.eu, firstname.lastname@cs.pub.ro

(NSDI 2014 Paper)

The Idealized Network

Physical

Datalink

Network

Transport

Application

Physical

Datalink

Network

Transport

Application

Physical

Datalink

Network

Physical

Datalink

Page 2

A Middlebox World

Page 3

carrier-grade NAT

load balancer

DPI
QoE monitor

ad insertion

BRAS

session border
controller

transcoder

WAN accelerator

DDoS protection

firewall

IDS

Hardware Middleboxes - Drawbacks

▐  Expensive equipment/power costs

▐  Difficult to add new features (vendor lock-in)

▐  Difficult to manage

▐  Cannot be scaled on demand (peak planning)

Page 4

Page 5

Shifting Middlebox Processing to Software

▐  Can share the same hardware across multiple users/tenants

▐  Reduced equipment/power costs through consolidation

▐  Safe to try new features on a operational network/platform

▐ But can it be built using commodity hardware while still

achieving high performance?

▐  ClickOS: tiny Xen-based virtual machine that runs Click

From Thought to Reality - Requirements

Page 6

30 msec boot times

ClickOS

5MB when running

provided by Xen

10Gb/s line rate*
45 µsec delay

* for most packet sizes

provided by Click

▐  Fast Instantiation

▐  Small footprint

▐  Isolation

▐  Performance

▐  Flexibility

What's ClickOS ?
domU

paravirt

apps

guest
OS

ClickOS

paravirt

Click

mini
OS

Page 7

▐  Work consisted of:

l Build system to create ClickOS images (5 MB in size)

l Emulating a Click control plane over MiniOS/Xen

l Reducing boot times (roughly 30 milliseconds)

l Optimizations to the data plane (10 Gb/s for almost all pkt sizes)

l  Implementation of a wide range of middleboxes

netback

packet size
(bytes)

10 Gbit/s
rate

64 14.88 Mp/s

128 8.4 Mp/s

256 4.5 Mp/s

512 2.3 Mp/s

1024 1.2 Mp/s

1500 810 Kp/s

Performance analysis

Page 8

Driver Domain (or Dom 0) ClickOS Domain

Xen bus/store

Event channel

netfront

Xen ring API
(data)

NW driver OVS

300* Kp/s 350 Kp/s 225 Kp/s
* - maximum-sized packets

vif

Click

ToDevice

FromDevice

Performance analysis

Page 9

▐  Copying packets between guests greatly

affects packet I/O (1)

▐  Packet metadata allocations (2)

▐  Backend switch is slow (3)

▐  MiniOS netfront not as good as Linux

netback

Driver Domain (or Dom 0) ClickOS Domain

Xen bus/store

Event channel

netfront

Xen ring API

NW driver OVS

vif

Click

ToDevice

FromDevice

 772 ns (1)
~600 ns (2) ~3.4 us (3)

Optimizing Network I/O – Backend Switch

Page 10

VALE
netback

Driver Domain (or Dom 0) ClickOS Domain

netfront
Xen bus/store

Event channel

Xen ring API
(data)

 NW driver
(netmap mode)

port

Click

FromDevice

ToDevice

▐  Reuse Xen page permissions (frontend)

▐  Introduce VALE[1] as the backend switch

▐  Increase I/O requests batch size

 OVS

[1] VALE, a switched ethernet for virtual machines, ACM CoNEXT'2012
Luigi Rizzo, Giuseppe Lettieri
Universita di Pisa

VALE

Optimizing Network I/O

Page 11

Driver Domain (or Dom 0) ClickOS Domain

netfront

NW driver
Click

FromDevice

ToDevice

netback

Netmap API
(data)

▐  Minimal memory requirements

–  For max. throughput a guest only needs 2 MB of
memory

▐  Breaks other (non-MiniOS) guests

–  But we have implemented Linux netfront driver

slots
 KB
(per
ring)

grants
(per ring)

64 135 33

128 266 65

256 528 130

512 1056 259

1024 2117 516

2048 4231 1033

netback

port

Xen bus/store

Event channel

Xen ring API
(data)

ClickOS Prototype Overview

▐  Click changes are minimal ~600 LoC

▐  New toolstack for fast boot times

▐  Cross compile toolchain for MiniOS-based apps

▐  netback changes comprise ~500 LoC

▐  netfront (Linux/MiniOS) around ~600 LoC

▐  VALE switch extended to:

–  Connect NIC ports and modular switching

Page 12

EVALUATION

Page 13

Experiments

▐ ClickOS Instantiation

▐ State reading/insertion performance

▐ Delay compared with other systems

▐ Memory footprint

▐ Switch performance for 1+ NICs

▐ ClickOS/MiniOS performance

▐ Chaining experiments

▐ Scalability over multiple guests

▐ Scalability over multiple NICs

▐ Implementation and evaluation of middleboxes

▐ Linux Performance

Page 14

ClickOS Base Performance

Intel Xeon E1220 4-core 3.2GHz (Sandy bridge)
16GB RAM, 1x Intel x520 10Gb/s NIC.
One CPU core assigned to VMs, the rest to the Domain-0
Linux 3.6.10

Page 15

ClickOS Measurement Box

10Gb/s direct cable

ClickOS Base TX Performance

Page 16

ClickOS (virtualized) Middlebox Performance

Page 17

ClickOS Host 2 Host 1

10Gb/s direct cable 10Gb/s direct cable

Intel Xeon E1220 4-core 3.2GHz (Sandy bridge)
16GB RAM, 2x Intel x520 10Gb/s NIC.
One CPU core assigned to Vms, 3 CPU cores Domain-0
Linux 3.6.10

ClickOS (virtualized) Middlebox Performance

Page 18

Linux Guest Performance

▐  Note that our Linux optimizations apply only to netmap-based applications

Page 19

Conclusions

Page 20

▐  Virtual machines can do flexible high speed networking

▐  ClickOS: Tailor-made operating system for network processing

l Smaller is better: Low footprint is the key to heavy consolidation

l Memory footprint: 5MB

l Boot time: 30ms

▐  Future work:

l Massive consolidation of VMs (thousands)

l  Improved Inter-VM communication for service chaining

l Reactive VMs (e.g., per-flow)

ClickOS Boot times

Page 21

30 milliseconds

220 milliseconds

Scaling out – Multiple NICs/VMs

Intel Xeon E1650 6-core 3.2GHz, 16GB RAM, dual-port Intel x520 10Gb/s NIC.
3 cores assigned to VMs, 3 cores for dom0

Page 22

ClickOS Host 2

6x 10Gb/s direct cable 6x 10Gb/s direct cable

Host 1

Scaling out – 100 VMs Aggregate Throughput

Intel Xeon E1650 6-core 3.2GHz, 16GB RAM, dual-port Intel x520 10Gb/s NIC.
3 cores assigned to VMs, 3 cores for dom0

Page 23

ClickOS Delay vs. Other Systems

Page 24

Towards Massive Server Consolidation

Filipe Manco, João Martins, Felipe Huici

{filipe.manco,joao.martins,felipe.huici}@neclab.eu

NEC Europe Ltd.

Xen Developer Summit 2014

18 August 2014 26

The Super Fluid Cloud

●  Target: remove barriers in current cloud deployments
–  Extremely flexible infrastructure
–  Milliseconds instantiation and migration of resources
–  Thousands of concurrent units running

●  This would allow new use cases
–  On the fly deployment of middleboxes
–  Flash crowds
–  Energy consumption reduction
–  Your use case here...

18 August 2014 27

Recent trend: specialized guests

●  ClickOS, OSv, Mirage, Erlang on Xen, etc
–  Small memory footprints
–  Relatively fast boot times
–  Provide the basic functionality to make use cases a reality

●  Our work focuses on ClickOS
–  Targets network processing using the Click modular router software

18 August 2014 28

Wouldn't it be Nice if...

●  Thousands of guests on a single server
–  Short-term target: 10K
–  Medium-term target: 100K

●  Extremely fast domain creation, destruction and migration
–  Tens of milliseconds
–  Constant as number of guests increases

18 August 2014 29

Experiment Setup

●  Freshly installed Xen/Debian system
–  Xen 4.2
–  Linux 3.6.10
–  Debian squeeze

●  Commodity server
–  64 Cores @ 2.1GHz [4 x AMD Opteron 6376]
–  128GB RAM DDR3 @ 1333MHz

Xen and ClickOS Architecture

© NEC Corporation 2009

X
en

NIC

Dom0 (Linux)

M
in

iO
S

C
lick

ClickOS VM 1 ClickOS VM 2 ClickOS VM n

nw
driver

netback
Xen
bus

Xen

store
sw switch k

ern
el

u
ser-sp

a
c e

netfront
Xen
bus

netfront
Xen
bus

netfront
Xen
bus

C
lic

k
O

S
C

o
n

tro
l

F
ro

m
N

e
tfro

n
t

T
o

N
e
tfro

n
t

middlebox
config

Xen UI libraries

xl cosmos

SWIG

Python
tool

vif

TOOLSTACK

18 August 2014 31

Baseline Test

Boot as many guests as possible before system breaks

●  Using ClickOS guests

–  8 MB of RAM
–  1 VIF

●  Guests are mostly idle
–  Running arp responder configuration
–  Only arping guests to check they're working

18 August 2014 32

Didn't Work Quite Well...

●  Stopped test after 4K guests
–  Took ~ 5 days
–  Up to ~ 100 seconds for creation of last guest (normally ClickOS

boots in ~30 milliseconds)
●  All the domains were running, but:

–  Only first ~300 guests fully functional
●  System got extremely slow

–  Dom0 unusable

18 August 2014 33

Domain Creation Time

18 August 2014 34

Domain Creation Time

92 s

18 August 2014 35

Two Types of Problems

●  Hard limitations
–  Prevent guests from booting correctly
–  Only ~300 guests fully usable

●  Performance limitations
–  Decreasing system performance
–  System unusable after just a few hundred guests

HARD LIMITATIONS

© NEC Corporation 2009

18 August 2014 37

Issues

●  Cannot access guests' console
–  Only first ~300 guests have accessible console

●  Guests' VIF is not created
–  Only first ~1300 guests have usable VIF

●  Guests cannot access the Xenstore
–  Only first ~1300 guests have access to it

●  The back-end switch doesn't provide enough ports
–  Only 1024 available

18 August 2014 38

Number of File Descriptors

●  xenconsoled opens 3 FD per guest
–  /dev/xenbus; /dev/ptmx; /dev/pts/<id>;

●  Fix
–  Linux can easily handle > 300K FD
–  Tune fs.file-max; nofile ulimit;

18 August 2014 39

Number of PTYs

●  xenconsoled opens 1 PTY per guest
●  Fix

–  Linux can easily handle > 100K PTY
–  Tune kernel.tty.max

●  Future
–  Only create PTY when user connects to console
–  This also reduces number of FD to 1 per guest

18 August 2014 40

Number of Event Channels

●  3 Interdomain evtchn per guest
–  xenstore; console; VIF
–  64bit Dom0: NR_EVTCHNS == 4096
–  Dom0 runs out after ~1300 guests

●  Fix
–  Upgrade to Xen 4.4 + Linux 3.14:

●  NR_EVTCHNS == 128K

–  Split services into stub domains

18 August 2014 41

Number of IRQs

●  Linux runs out of IRQs to map evtchn
–  Limited by NR_CPUS

●  Fix
–  Build with: MAXSMP=y; NR_CPUS=4096
–  NR_IRQS == 256K

18 August 2014 42

vSwitch Ports

●  Currently back-end switch supports up to few thousand ports
–  Linux bridge: 1K
–  Open vSwitch: 64K

●  Workaround
–  Create multiple bridges

●  Longer-term fix
–  Develop a purpose-built back-end switch

18 August 2014 43

Summarizing

●  Xen 4.4; Linux 3.14
●  fs.file-max; nofile ulimit
●  kernel.tty.max
●  MAXSMP=y; NR_CPUS=4096

●  Not yet fixed:

–  Back-end switch ports

PERFORMANCE LIMITATIONS

© NEC Corporation 2009

18 August 2014 45

Issues

●  Overall system becomes too slow
–  oxenstored

●  CPU fully utilized after a few dozen guests
–  Xenconsoled

●  CPU limited after ~ 2K guests

●  Domain creation takes too long
–  Affects migration too

18 August 2014 46

“Blind” optimizations

●  4 Core Dom0
–  1 core for oxenstored
–  1 core for xenconsoled
–  2 cores for remaining processes

●  Pin all vCPUs to pCPUs
●  Round robin remaining 60 cores for guests
●  Put everything in a ramfs

18 August 2014 47

Tools' Optimizations

●  xl toolstack
–  Disable xl background process (xl create -e)
–  Disable memory ballooning on Dom0
–  Never use domain name

●  This causes xl to retrieve all guest names from the Xenstore
–  Use specialized VIF hotplug script
–  Don't retrieve domain list on creation [PATCH]

●  oxenstored
–  Use more recent version of Xenstore from:

•  https://github.com/mirage/ocaml-xenstore

18 August 2014 48

Creation Times with Optimizations

18 August 2014 49

Creation Times with Optimizations

2.3 s

18 August 2014 50

How much better is it?

18 August 2014 51

With Optimizations

●  Improvement: system is still usable after 10K guests
–  Although domain creation time is far from ideal

●  However...
–  xenstored still CPU heavy
–  xenconsoled still CPU heavy

18 August 2014 52

xenconsoled

●  Two major optimizations
–  Move from poll to epoll
–  On INTRODUCE_DOMAIN, search from last domid

●  Avoid listing all existing domains

●  CPU usage down to ~ 10% max.

18 August 2014 53

What Bottlenecks Remain?

18 August 2014 54

Domain Creation Breakdown

18 August 2014 55

Let's Look at the Toolstack Again

●  The domain creation process is too complex for our specialized
VMs
–  Also makes the profiling really difficult and inaccurate
–  A lot of unnecessary Xenstore entries

●  Some checks take a lot of time
–  Mainly checking for duplicate names

18 August 2014 56

xcl: XenCtrl Light

●  A very simplified toolstack
●  Small abstraction on top of libxc (~600 LOC)

–  Optimized for our use case
●  Only boots PV and PVH domains
●  Only supports VIFs

–  Reduced Xenstore usage
●  From 37 to 17 entries per guest
●  Less Xenstore operations

–  Doesn't check domain name

18 August 2014 57

xl vs xcl

18 August 2014 58

xl vs xcl

0.1 s

2.3 s

18 August 2014 59

With xcl
●  Much better
●  But reducing the number of Xenstore entries is only a palliative

–  Eventually the issue will come back as we increase the
number of guests
●  Xenstore remains a major bottleneck

18 August 2014 60

lixs: LIghtweight XenStore

●  Work in progress (about 1 month)
●  Written from scratch but compatible with the Xenstore protocol
●  Currently ~1800 LOC
●  C++

18 August 2014 61

lixs vs oxenstored

Cumulative time: ~ 11 min

Cumulative time: ~ 8 min

18 August 2014 62

Breakdown with lixs

18 August 2014 63

lixs: Future Work

●  Optimize protocol
–  Make Xenstore more specialized
–  Avoid all possible listing operations

●  Optimize implementation
–  Remove unix sockets
–  Generic storage backend

●  std::map; noSQL DB; <your backend here>;
●  10K guests with std::map took 10m 3s
●  10K guests with boost::unordered_map took 7m 54s

18 August 2014 64

Where are we?

●  Usable system running 10K guests
●  10K guests actually working

–  Although idle most of the time
●  Lower domain creation times

–  First domain: < 10ms
–  With 10K domains: < 100ms

–  Recent test: 1,000 VMs running ICMP responder configuration,
plus one running content cache (Minicache)
–  All 1,001 VMs work as expected!

18 August 2014 65

Will it work? Can we reach 100K?

●  There are no fundamental issues with Xen
–  But we only tested it up to 10K guests

●  Xenstore protocol needs work
–  Make Xenstore more specialized
–  With 10K+ guests we need to avoid listings

18 August 2014 66

Future work

●  Improve lixs and Xenstore protocol
●  Multi thousand-port vSwitch
●  Have guests doing useful work
●  Scheduling

–  Number of guests much bigger than number of cores
–  With that many guests we'll have scheduling issues

●  Reducing Memory Usage
–  Smaller image sizes
–  Share memory between guests booting same image

18 August 2014 67

Xenstore Entries: xl vs xcl
XL

1 = ""

 vm = "/vm/2baefa82-612c-4e5b-a52d-396a91d5ad7b"

 name = "proxy"

 cpu = ""

 0 = ""

 availability = "online"

 memory = ""

 static-max = "8192"

 target = "8193"

 videoram = "-1"

 device = ""

 suspend = ""

 event-channel = ""

 vif = ""

 0 = ""

 backend = "/local/domain/0/backend/vif/46/0"

 backend-id = "0"

 state = "1"

 handle = "0"

 mac = "00:16:3e:32:ca:23"

 1 = ""

 backend = "/local/domain/0/backend/vif/46/1"

 backend-id = "0"

 state = "1"

 handle = "1"

 mac = "00:16:3e:2e:22:7c"

 control = ""

 shutdown = ""

 platform-feature-multiprocessor-suspend = "1"

 platform-feature-xs_reset_watches = "1"

 data = ""

 domid = "46"

 store = ""

 port = "1"

 ring-ref = "3188551"

 console = ""

 backend = "/local/domain/0/backend/console/46/0"

 backend-id = "0"

 limit = "1048576"

 type = "xenconsoled"

 output = "pty"

 tty = "/dev/pts/1"

 port = "2"

 ring-ref = "3188550"

XCL

1 = ""

 control = ""

 shutdown = ""

 vm = "/vm/4c3f2a04-e39f-4ad8-9d7f-1b5556f02b34"

 name = "proxy"

 domid = "48"

 console = ""

 port = "2"

 ring-ref = "3157830"

 type = "xenconsoled"

 tty = "/dev/pts/1"

 device = ""

 vif = ""

 0 = ""

 backend = "/local/domain/0/backend/vif/48/0"

 backend-id = "0"

 state = "1"

 handle = "0"

 mac = "00:00:00:00:00:00"

 1 = ""

 backend = "/local/domain/0/backend/vif/48/1"

 backend-id = "0"

 state = "1"

 handle = "1"

 mac = "00:00:00:00:00:00"

18 August 2014 68

Number of grants

●  2 grants per domain
–  xenstore; xenconsole;
–  With v1: 512 grants per frame
–  DEFAULT_MAX_NR_GRANT_FRAMES == 32

●  Maximum of (512 * 32) / 2 == 8K

●  Fix
–  Boot xen with max_nr_grant_frames=512

●  Up to 128K domains

It's Open Source!

Page 69

Checkout

l  ClickOS, Backend Switch, Xen optimizations and more!

l  Tutorials

l  Better performance than listed in the papers!

We are always looking for…

© NEC Corporation 2009

Interns
Visiting researchers
Collaborations

(and often full-time researchers)

Interested? felipe.huici@neclab.eu

