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Trends	  on	  Network	  FuncPonaliPes	  
by	  Soaware	  on	  COTS	  hardware	

n  SDN:	  Soaware	  Defined	  Network	  
p  SeparaPon	  of	  

u Forwarding	  Plane;	  by	  hardware	  
u Control	  Plane;	  by	  soaware	  

n  NFV:	  Network	  FuncPon	  VirtualizaPon	  
p Network	  funcPon	  by	  soaware	  with	  virtualizaPon	  
technologies	  (e.g.,	  virtual	  machine,	  container,	  
process)	
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Networking	  OperaPng	  System	

n  “OperaPng	  System”	  (OS)	  
p  Fundamental	  system	  soaware	  in	  charge	  of	  

u Resource	  management	  (hardware/soaware)	  
u ProtecPon,	  Filesystem,	  mulPtasking	  etc.	  

n  COTS	  Network	  FaciliPes	  (using	  generic	  CPU)	  
=	  Networking	  Opera/ng	  System	  
p  Inexpensive	  
p  Flexible	  
p  Extensible	
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DeparPng	  from	  Generic	  OS	
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Networking	  OperaPng	  System	  
from	  Scratch	

n  “from	  scratch”	  
1.  Evaluate	  the	  best	  performance	  of	  COTS	  

hardware	  
u Bolleneck	  analysis	  

2.  Design	  new	  algorithm/architecture	  
u Scheduler	  
u Memory	  management	  
u ProtecPon	  
u Protocol	  stack	  
u RouPng	  table	  lookup	  algorithm	
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Towards	  High-‐Performance	  Network	  
Facili/es	  with	  COTS	  hardware	
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Network	  FaciliPes	  with	  COTS	  hardware	

n  Background	  
p  Generic	  CPU	  (IA)	  for	  packet	  processing	  
p  PCIe	  NIC	  for	  packet	  forwarding	  

n  Goal:	  High-‐performance	  network	  faciliPes	  w/	  
soaware	  
p  Router:	  40GbE/100GbE	  line-‐rate	  rouPng	  (1M	  RiB	  
entries)	  

p  Middlebox:	  Firewall,	  Load-‐balancer,	  etc.	  
p  Server	  apps:	  HTTP,	  AuthenPcaPon,	  AccounPng,	  etc.	  
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VFSR:	  Very	  Fast	  Soaware	  Router	

n  EssenPal	  Components	  
1.  Fast	  packet	  forwarding	  

u High-‐rate	  per	  core/port	  for	  in-‐order	  processing	  

2.  Fast	  IP	  rouPng	  table	  lookup	  
u #	  of	  routes:	  >512k	  (envisioning	  >800k)	  
u High-‐rate	  per	  core	  for	  in-‐order	  processing	  
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Key	  Numerical	  Values	  of	  “fast”:	  
Packet	  Rate	  for	  10/40/100GbE	

n  Ethernet	  
p Minimum	  frame	  length:	  64-‐Byte	  
(=Maximum	  frame	  rate)	  
u 1GbE:	  1.488Mpps	  

=	  672	  ns/packet	  
u 10GbE:	  14.88Mpps	  

=	  67.2	  ns/packet	  
u 40GbE:	  59.52Mpps	  

=	  16.8	  ns/packet	  
u 100GbE:	  148.8Mpps	  

=	  6.72	  ns/packet	
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Myths	  on	  Packet	  Forwarding	

n  Bollenecks	  in	  packet	  forwarding	  
p  CPU	  is	  slow.	  

u Yes,	  for	  packet	  processing,	  but	  forwarding	  requires	  only	  
a	  set	  of	  simple	  instrucPons	  
–  e.g.,	  0.3	  ns	  /	  CPU	  cycle	  @	  3.3GHz	  CPU	  

p Memory	  copy	  is	  so	  heavy.	  
u At	  least,	  throughput	  is	  enough.	  

–  e.g.,	  DDR3-‐1866	  Dual	  Channel:	  29.867GB/s	  (238.933Gbps)	  	  
p  Interrupts	  incur	  excessive	  overheads.	  

u Not	  excessive,	  but	  non-‐negligible	  for	  100	  GbE	  
–  Discuss	  this	  later	  
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Real	  Bolleneck	  on	  Packet	  Forwarding	
n  PCIe	  device	  register	  access	  

=	  Memory	  Mapped	  I/O	  (MMIO)	  
–  No	  cache	  

u  ~250ns/access	  [Miller	  et	  al.	  ACM	  ANCS	  ’09]	  
p  Read	  

u  1529.17	  cycles	  /	  read	  
u  392.1	  ns	  /	  read	  

p  Write	  
u  282.621	  cycles	  /	  write	  
u  72.47	  ns	  /	  write	

※Measure	  CPU	  cycles	  to	  access	  to	  the	  same	  register	  
1	  million	  Pmes	  by	  Performance	  Monitoring	  Counter	  (PMC)	  

CPU:	  Intel	  Core	  i7	  4770K	  
Memory:	  Corsair	  DDR3-‐1866	  8GB	  x4	  
NIC:	  Intel	  X520-‐DA2	  
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Review:	  Generic	  NIC	  Architecture	

18	

Ring	  buffer	
Descriptors	 Buffer	
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Review:	  Generic	  NIC	  Architecture	

19	

Ring	  buffer	
Descriptors	 Buffer	

Packet	  recep/on	  
1.  NIC	  receives	  a	  packet	  
2.  NIC	  transfer	  the	  packet	  data	  to	  

a	  buffer	  in	  RAM	  via	  DMA	  
3.  NIC	  proceeds	  the	  head	  pointer	  
4.  Soaware	  processes	  the	  packet	  
5.  Soaware	  proceeds	  the	  tail	  

pointer	  to	  release	  the	  packet	  

(3)	  head	

(2)	

(5)	  tail	
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Review:	  Generic	  NIC	  Architecture	
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Ring	  buffer	
Descriptors	 Buffer	
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Polling	  &	  Bulk	  Processing	  
(Transmission,	  Intel®	  X520)	
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txq_tail = 0;
for ( ;; ) {

txq_head = read_txq_head();
/* Available Tx queue length */
txq_len = txq_sz

- (txq_sz - txq_head + txq_tail) % txq_sz;
/* Check the available Tx queue length */
if ( txq_len < n ) continue;
for ( i = 0; i < n; i++ ) {

// Set packet to the ring buffer to txq_tail
txq_ring[txq_tail].pkt = pkt_to_transmit;
txq_tail = (txq_tail + 1)  % txq_sz

}
/* Commit */
write_txq_tail(txq_tail);

}	

~392.1ns	

~72.47ns	

Note:	  Can	  be	  
opPmized…	



Tx	  Performance	  by	  bulk	  size	  
(Intel®	  X520)	
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Note:	  Also	  confirmed	  59.52	  Mpps	  Tx	  (2	  Intel®	  X520-‐DA2)	  @	  1	  core	  from	  Intel®	  Core	  i7-‐4770K	



Intel®	  XL710’s	  OperaPon	
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Polling	  &	  Bulk	  Processing	  
(Transmission,	  Intel®	  XL710)	
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txq_tail = 0;
for ( ;; ) {

completed = check_wb_status(txq_tail, n);
/* Check the transmission is completed */
if ( !completed ) continue;
for ( i = 0; i < n; i++ ) {

// Set packet to the ring buffer to txq_tail
txq_ring[txq_tail].pkt = pkt_to_transmit;
txq_tail = (txq_tail + 1)  % txq_sz

}
/* Commit */
write_txq_tail(txq_tail);

}	

PCIe	  MMIO	

Note:	  Can	  be	  
opPmized…	



Intel®	  XL710’s	  performance	
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Same	  Strategy	  for	  Forwarding	  
(RouPng	  for	  1	  route)	

April	  9th,	  2015	 H.	  Asai,	  "Networking	  OperaPng	  System	  from	  Scratch"	 28	

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  200  400  600  800  1000  1200  1400  1600

Th
ro

ug
hp

ut
 [G

bp
s]

Frame size [byte]

My implementation
Linux

Line rate

※1	  route	  
　TTL	  and	  checksum	  calculaPon	  
	  	  	  are	  done	  by	  CPU	

Transmitter Router
RX TX

RX

untag 

untag 

untag 

Hardware	  switch	  
(interface	  counter	  for	  evaluaPon)	  

Transmiler	  (pix)	 Router	  (pix)	

Bulk	  polling	  &	  transmission	  
(dynamic	  bulk	  size	  =	  received	  queue	  length)	



Latency	  measurement	

n  Experimental	  setup	  
p  Tester	  

u Spirent	  CommunicaPons	  Spirent	  TestCenter	  
–  Chassis:	  SPT-‐N4U-‐110	  
– Module:	  CV-‐10G-‐S8	  	  

u Supported	  by	  株式会社東陽テクニカ様	  during	  Interop	  
Tokyo	  2014	  
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Low	  Latency	  
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Low	  latency（~10us）for	  90%	  of	  line-‐rate	  traffic	
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0.001Mpps	  loss	  
(need	  inves/ga/on…)	  



RevisiPng	  the	  Overhead	  of	  Interrupts	  
for	  Faster	  Packet	  Processing	  &	  I/O	
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pushq %rax
pushq %rbx
pushq %rcx
pushq %rdx
pushq %rdi
pushq %rsi
pushq %rbp
pushq %r8
pushq %r9
pushq %r10
pushq %r11
pushq %r12
pushq %r13
pushq %r14
pushq %r15
call _kintr

popq %r15
popq %r14
popq %r13
popq %r12
popq %r11
popq %r10
popq %r9
popq %r8
popq %rbp
popq %rsi
popq %rdi
popq %rdx
popq %rcx
popq %rbx
popq %rax
iretq

Latency	 Throughput	

PUSH	  (@0F_2H)	 1.5	 1	

POP	  (@0F_2H)	 1.5	 1	

CLI	  (@06_2A/2D)	 5	 2	

Push	  15	  general	  purpose	  registers	  onto	  the	  stack,	  
pop	  15	  general	  purpose	  registers	  from	  the	  stack,	  
and	  then	  return	  to	  the	  restore	  point	  
while	  popping	  the	  original	  stack	  pointer	  etc.	  

Referred	  from	  Intel®	  64	  and	  IA-‐32	  
Architectures	  OpPmizaPon	  Reference	  Manual	  	  

30	  CPU	  cycles	  for	  push/pop	  instrucPons	  
è	  10	  ns	  @3GHz	  CPU	  



Interim	  Summary	

n  Faster	  packet	  forwarding	  
p  Reduce	  slow	  PCIe	  MMIO	  
è	  Key:	  Bulk	  processing	  
u Read	  

–  392.1	  ns	  /	  read	  
u Write	  

–  72.47	  ns	  /	  write	

p  Avoid	  using	  interrupt	  handlers	  for	  40GbE/100GbE	  
è	  Key:	  Polling,	  Tickless	  
u 10	  ns	  to	  save	  and	  restore	  CPU’s	  registers	
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VFSR:	  Very	  Fast	  Soaware	  Router	

n  EssenPal	  Components	  
1.  Fast	  packet	  forwarding	  

u High-‐rate	  per	  core/port	  for	  in-‐order	  processing	  

2.  Fast	  IP	  rouPng	  table	  lookup	  
u #	  of	  routes:	  >512k	  (envisioning	  >800k)	  
u High-‐rate	  per	  core	  for	  in-‐order	  processing	  
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Poptrie:	  A	  Compressed	  Trie	  with	  PopulaPon	  Count	  
for	  Fast	  and	  Scalable	  Soaware	  IP	  RouPng	  Table	  Lookup	

Hirochika	  Asai	  (Univ.	  of	  Tokyo)	  
Yasuhiro	  Ohara	  (NTT	  CommunicaPons)	  



Fundamental	  Algorithm	  
for	  Longest	  Prefix	  Match	
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0.0.0.0/2	 64.0.0.0/2	

64.0.0.0/3	

Binary	  Radix	  Tree	
Problem	  with	  binary	  radix	  tree	  
•  Depth	  up	  to	  32	  (for	  IPv4)	  
•  Too	  many	  pointers	  

è	  Slow	  



Principle	  Ideas	  towards	  Faster	  IP	  
RouPng	  Table	  Lookup	  Algorithm	

n  Reduce	  the	  number	  of	  instrucPon,	  
especially	  memory	  access	  
p  1	  or	  a	  few	  cycles	  for	  most	  of	  bitwise	  instrucPons	  
p  Memory	  access	  latency	  (in	  Intel	  Core	  i7-‐4770K)	  

u  L1	  cache:	  4-‐5	  cycles	  
u  L2	  cache:	  12	  cycles	  
u  L3	  cache:	  27.85	  cycles	  
u DRAM:	  ~65	  ns	  

n  Reduce	  memory	  footprint	  
p  Maximize	  CPU	  cache	  efficiency	  

u  L1/L2/L3	  cache	  size	  in	  Intel	  Core	  i7-‐4770K	  
–  64	  KiB,	  256	  KiB,	  8	  MiB	  
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Reduce	  the	  number	  of	  instrucPons:	  
StarPng	  from	  2^k-‐ary	  radix	  tree	

x
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x
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leaf

: child node is an internal node
: child node is a leaf node
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(k=2)
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(descendant array)

Figure 1: The 2k-ary radix tree (k = 2).

gregation”, is not our contribution, and is applicable to other
lookup technologies as well. Unless otherwise noted, the
performance results shown in this paper are with the route
aggregation option.

Poptrie is extended from the multiway trie (i.e., M -way
or M -ary where M = 2k). The 2k-ary radix tree where
k = 2 is illustrated in Figure 1. Each node holds 2k ele-
ments in the descendant array, corresponding to the value of
the k-bit chunk in the key IP address. An element in the de-
scendant array points to its next-level child internal node or
a leaf node holding an index to the corresponding FIB entry.
Although we selected k = 6 for our implementation to fit the
size of registers of the 64-bit CPU architecture, we illustrate
the k = 2 case in this section for the brevity. The admirable
performance of Poptrie is due to the small memory footprint
so that it can be contained completely within the CPU cache,
and yet it leverages the effective multiway branching to re-
duce the total number of steps that is necessary to search
down the tree.

We describe the options in Poptrie step by step; the basic
mechanism in Section 3.1, the lookup algorithm in the basic
mechanism in Section 3.2, the leafvec extension to compress
the size of leaf nodes in Section 3.3, and the additional op-
tions of direct pointing in Section 3.4. The internal node
in the basic poptrie contains vector, base0, and base1, and
which are 8 bytes, 4 bytes, and 4 bytes, respectively. Hence
the total size of an internal node is only 16 bytes. When we
use the leafvec extension, we will add 8 bytes of leafvec in
the internal node, so the size of an internal node is then 24
bytes. Usually, we will use all the extensions and options in
the later evaluation, unless otherwise noted explicitly. In the
implementation, the contiguous arrays of internal and leaf
nodes are managed by a fast memory allocator [14] known
as the buddy memory allocator.

3.1 Basic Mechanism
First, the descendant array in the multiway trie is changed

to be a bitwise array (i.e., a bit vector) in Poptrie. The vec-
tor and the base1 collectively serve as the descendant array.
The vector is a bit-vector index of the length 2k bits, for the
current k-bit address chunk. The n-th bit in the vector corre-
sponds to the child node with the value n in the current k-bit

31270 0 1 0 2498

vector base0 base1

child nodeN
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internal node

L
N[2498]

Figure 2: The vector in the internal node is con-
figured so that the bit-1 indicates a descendant
node, and the bit-0 indicates a leaf node.

address chunk. Each bit in the vector indicates the type of
the corresponding child node: the bit is set to 1 if the cor-
responding child is an internal node, and it is set to 0 if the
corresponding child is a leaf node. In other words, the vector
indicates the existence of the corresponding descendant in-
ternal node, and then if there is no descendant internal node,
the search will always result in a leaf node in the very level
of the tree.

The necessary descendant internal or leaf nodes are placed
so that they form a contiguous array. The array starts with
the descendant node which corresponds to n = 0, in the
ascending order up to n = 63 when k = 6. However, unnec-
essary nodes are skipped; if the node corresponds to n = 0
is not necessary, the array can start with n = 1, with corre-
sponding bits in vector properly set. This way, unnecessary
descendant nodes which do not have branches or leaf infor-
mation are omitted, allowing compact data structure size and
efficient use of memory.

The next node in the search within the tree can be ob-
tained as follows: Since the value n of the current k-bit ad-
dress chunk corresponds to the n-th bit in the vector, the
number of 1s in the least significant n + 1 bits of the vector
can be used as the index of the next node within the current
internal node’s descendant array. Here, we can utilize the
popcnt CPU instruction to accelerate the calculation of the
next node in the search procedure, as described later in Sec-
tion 3.2. Since vector bit-vector only provides the indirect
address (i.e., index) within the current descendant array, it
is necessary to provide the starting point of the descendant
array. The base1 is the base index to the consecutive sub-
sequence of the internal nodes that are the children of this
node. Similarly, the indirect index of the leaf node is ob-
tained by counting the 0 in the vector. The starting offset for
the leaf node is contained in base0. Figure 2 illustrates an
example of the indirect index of internal and leaf nodes with
vector, base1, and base0.

3.2 Lookup Algorithm
The lookup algorithm steps down the tree according to the

specified IP address like the normal 2k-ary radix tree to find
the leaf node. At the depth of d, the d-th chunk of the ad-

3

To	  reduce	  the	  depth	  of	  the	  tree	  (i.e.,	  #	  of	  memory	  access)	
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Reduce	  memory	  footprint:	  Pointer	  
Compression	  w/	  PopulaPon	  Count	
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Figure 1: The 2k-ary radix tree (k = 2).

gregation”, is not our contribution, and is applicable to other
lookup technologies as well. Unless otherwise noted, the
performance results shown in this paper are with the route
aggregation option.

Poptrie is extended from the multiway trie (i.e., M -way
or M -ary where M = 2k). The 2k-ary radix tree where
k = 2 is illustrated in Figure 1. Each node holds 2k ele-
ments in the descendant array, corresponding to the value of
the k-bit chunk in the key IP address. An element in the de-
scendant array points to its next-level child internal node or
a leaf node holding an index to the corresponding FIB entry.
Although we selected k = 6 for our implementation to fit the
size of registers of the 64-bit CPU architecture, we illustrate
the k = 2 case in this section for the brevity. The admirable
performance of Poptrie is due to the small memory footprint
so that it can be contained completely within the CPU cache,
and yet it leverages the effective multiway branching to re-
duce the total number of steps that is necessary to search
down the tree.

We describe the options in Poptrie step by step; the basic
mechanism in Section 3.1, the lookup algorithm in the basic
mechanism in Section 3.2, the leafvec extension to compress
the size of leaf nodes in Section 3.3, and the additional op-
tions of direct pointing in Section 3.4. The internal node
in the basic poptrie contains vector, base0, and base1, and
which are 8 bytes, 4 bytes, and 4 bytes, respectively. Hence
the total size of an internal node is only 16 bytes. When we
use the leafvec extension, we will add 8 bytes of leafvec in
the internal node, so the size of an internal node is then 24
bytes. Usually, we will use all the extensions and options in
the later evaluation, unless otherwise noted explicitly. In the
implementation, the contiguous arrays of internal and leaf
nodes are managed by a fast memory allocator [14] known
as the buddy memory allocator.

3.1 Basic Mechanism
First, the descendant array in the multiway trie is changed

to be a bitwise array (i.e., a bit vector) in Poptrie. The vec-
tor and the base1 collectively serve as the descendant array.
The vector is a bit-vector index of the length 2k bits, for the
current k-bit address chunk. The n-th bit in the vector corre-
sponds to the child node with the value n in the current k-bit
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vector base0 base1
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Figure 2: The vector in the internal node is con-
figured so that the bit-1 indicates a descendant
node, and the bit-0 indicates a leaf node.

address chunk. Each bit in the vector indicates the type of
the corresponding child node: the bit is set to 1 if the cor-
responding child is an internal node, and it is set to 0 if the
corresponding child is a leaf node. In other words, the vector
indicates the existence of the corresponding descendant in-
ternal node, and then if there is no descendant internal node,
the search will always result in a leaf node in the very level
of the tree.

The necessary descendant internal or leaf nodes are placed
so that they form a contiguous array. The array starts with
the descendant node which corresponds to n = 0, in the
ascending order up to n = 63 when k = 6. However, unnec-
essary nodes are skipped; if the node corresponds to n = 0
is not necessary, the array can start with n = 1, with corre-
sponding bits in vector properly set. This way, unnecessary
descendant nodes which do not have branches or leaf infor-
mation are omitted, allowing compact data structure size and
efficient use of memory.

The next node in the search within the tree can be ob-
tained as follows: Since the value n of the current k-bit ad-
dress chunk corresponds to the n-th bit in the vector, the
number of 1s in the least significant n + 1 bits of the vector
can be used as the index of the next node within the current
internal node’s descendant array. Here, we can utilize the
popcnt CPU instruction to accelerate the calculation of the
next node in the search procedure, as described later in Sec-
tion 3.2. Since vector bit-vector only provides the indirect
address (i.e., index) within the current descendant array, it
is necessary to provide the starting point of the descendant
array. The base1 is the base index to the consecutive sub-
sequence of the internal nodes that are the children of this
node. Similarly, the indirect index of the leaf node is ob-
tained by counting the 0 in the vector. The starting offset for
the leaf node is contained in base0. Figure 2 illustrates an
example of the indirect index of internal and leaf nodes with
vector, base1, and base0.

3.2 Lookup Algorithm
The lookup algorithm steps down the tree according to the

specified IP address like the normal 2k-ary radix tree to find
the leaf node. At the depth of d, the d-th chunk of the ad-
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gregation”, is not our contribution, and is applicable to other
lookup technologies as well. Unless otherwise noted, the
performance results shown in this paper are with the route
aggregation option.

Poptrie is extended from the multiway trie (i.e., M -way
or M -ary where M = 2k). The 2k-ary radix tree where
k = 2 is illustrated in Figure 1. Each node holds 2k ele-
ments in the descendant array, corresponding to the value of
the k-bit chunk in the key IP address. An element in the de-
scendant array points to its next-level child internal node or
a leaf node holding an index to the corresponding FIB entry.
Although we selected k = 6 for our implementation to fit the
size of registers of the 64-bit CPU architecture, we illustrate
the k = 2 case in this section for the brevity. The admirable
performance of Poptrie is due to the small memory footprint
so that it can be contained completely within the CPU cache,
and yet it leverages the effective multiway branching to re-
duce the total number of steps that is necessary to search
down the tree.

We describe the options in Poptrie step by step; the basic
mechanism in Section 3.1, the lookup algorithm in the basic
mechanism in Section 3.2, the leafvec extension to compress
the size of leaf nodes in Section 3.3, and the additional op-
tions of direct pointing in Section 3.4. The internal node
in the basic poptrie contains vector, base0, and base1, and
which are 8 bytes, 4 bytes, and 4 bytes, respectively. Hence
the total size of an internal node is only 16 bytes. When we
use the leafvec extension, we will add 8 bytes of leafvec in
the internal node, so the size of an internal node is then 24
bytes. Usually, we will use all the extensions and options in
the later evaluation, unless otherwise noted explicitly. In the
implementation, the contiguous arrays of internal and leaf
nodes are managed by a fast memory allocator [14] known
as the buddy memory allocator.

3.1 Basic Mechanism
First, the descendant array in the multiway trie is changed

to be a bitwise array (i.e., a bit vector) in Poptrie. The vec-
tor and the base1 collectively serve as the descendant array.
The vector is a bit-vector index of the length 2k bits, for the
current k-bit address chunk. The n-th bit in the vector corre-
sponds to the child node with the value n in the current k-bit
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vector base0 base1
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Figure 2: The vector in the internal node is con-
figured so that the bit-1 indicates a descendant
node, and the bit-0 indicates a leaf node.

address chunk. Each bit in the vector indicates the type of
the corresponding child node: the bit is set to 1 if the cor-
responding child is an internal node, and it is set to 0 if the
corresponding child is a leaf node. In other words, the vector
indicates the existence of the corresponding descendant in-
ternal node, and then if there is no descendant internal node,
the search will always result in a leaf node in the very level
of the tree.

The necessary descendant internal or leaf nodes are placed
so that they form a contiguous array. The array starts with
the descendant node which corresponds to n = 0, in the
ascending order up to n = 63 when k = 6. However, unnec-
essary nodes are skipped; if the node corresponds to n = 0
is not necessary, the array can start with n = 1, with corre-
sponding bits in vector properly set. This way, unnecessary
descendant nodes which do not have branches or leaf infor-
mation are omitted, allowing compact data structure size and
efficient use of memory.

The next node in the search within the tree can be ob-
tained as follows: Since the value n of the current k-bit ad-
dress chunk corresponds to the n-th bit in the vector, the
number of 1s in the least significant n + 1 bits of the vector
can be used as the index of the next node within the current
internal node’s descendant array. Here, we can utilize the
popcnt CPU instruction to accelerate the calculation of the
next node in the search procedure, as described later in Sec-
tion 3.2. Since vector bit-vector only provides the indirect
address (i.e., index) within the current descendant array, it
is necessary to provide the starting point of the descendant
array. The base1 is the base index to the consecutive sub-
sequence of the internal nodes that are the children of this
node. Similarly, the indirect index of the leaf node is ob-
tained by counting the 0 in the vector. The starting offset for
the leaf node is contained in base0. Figure 2 illustrates an
example of the indirect index of internal and leaf nodes with
vector, base1, and base0.

3.2 Lookup Algorithm
The lookup algorithm steps down the tree according to the

specified IP address like the normal 2k-ary radix tree to find
the leaf node. At the depth of d, the d-th chunk of the ad-

3

Four	  pointers	

Bit-‐vector	  +	  two	  pointers	

Index:	  #	  of	  1’s	  bits	  in	  the	  
least	  significant	  N	  bits	

Index:	  #	  of	  0’s	  bits	  in	  the	  
least	  significant	  N	  bits	

Which	  k?	  64-‐bit	  CPU	  è	  k=6	  (so	  that	  vector	  is	  in	  2^6	  =	  64	  bits)	
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Further	  Compression:	  Leaf	  Vector	  to	  
Remove	  Redundant	  Leaf	  Nodes	

Algorithm 1 lookup (t = (N , L), key); the lookup
procedure for the address key in the tree t (when k =
6). The function extract(key, off, len) extracts bits of
length len, starting with the offset off, from the address
key. N and L represent arrays of internal nodes and
leaves, respectively. ≪ denotes the shift instruction of
bits.
1: index = 0;
2: vector = t.N [index].vector;
3: offset = 0;
4: v = extract (key, offset, 6);
5: while (vector & (1ULL ≪ v)) do
6: base = t.N [index].base1;
7: bc = popcnt (vector & ((2ULL ≪ v) - 1));
8: index = base + bc - 1;
9: vector = t.N [index].vector;
10: offset += 6;
11: v = extract (key, offset, 6);
12: end while
13: base = t.N [index].base0;
14: bc = popcnt ((∼t.N [index].vector) & ((2ULL ≪ v) - 1));
15: return t.L[base + bc - 1];

dress is used as the index of the vector in the internal node.
Let the value of the d-th chunk in the key address be n, and
then the lookup at the depth of d is executed as follows: If
the corresponding bit is one, then the lookup algorithm con-
tinues to the next depth. The index of the next internal node
in the descendant array is computed by adding to the base1
the number of 1s in the least significant n+1 bits of the vec-
tor minus 1. If the corresponding bit is zero, then the lookup
algorithm finishes the lookup by finding a leaf node. The in-
dex of the leaf node in the leaf array is computed by adding
to the base0 the number of 0s in the least significant n + 1
bits of the vector minus 1.

The unique key point in Poptrie is the use of the instruc-
tion to count the number of 1s and 0s in a bit string. Those
counts are used as the indirect index of the descendant node
and the leaf node, respectively. The procedure of counting
the number of 1s in a bit string is called “population count”,
and an instruction executing the population count, popcnt,
has been implemented in the CPU instruction set of x86 pro-
cessors. When the popcnt CPU instruction is not available,
a fast alternative can be found in the literature [32].

The lookup algorithm is shown in Algorithm 1 where the
length of the chunk k = 6. The algorithm takes the poptrie
structure t and the IP address key as its input arguments, and
returns the content of the longest matching leaf. In t, there
are the internal node array N , and the leaf array L. In Line 1
the index is set to 0 to access the root internal node. Line 2
accesses to the vector of the root internal node. In Line 4,
we obtain the value of the first 6-bit chunk from the offset 0.
Line 5 to Line 12 are the main loop that continues as long as
there is a corresponding descendant internal node (checked
in Line 5). Line 7 gets the population count of set bits in
the least significant v + 1 bits and store it in bc. The next
node’s index is calculated (Line 8), the next node’s vector is
prepared to be checked (Line 9), and the chunk is shifted by

0 0 0 1 31270 0 1 0 2498

leafvec vector base0 base1

child nodeN

L[3127] L[3128] L[3129]
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internal node
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Hole punching

N[2498]

irrelevant

Figure 3: Merging identical leaf nodes with ig-
noring a hole punching using the leafvec

6 bits for the next round of the loop (Line 10, 11). Line 13
to 15 calculates the indirect index of the corresponding leaf,
and returns the content.

3.3 Compression with the Leaf Bit-Vector
The basic algorithm described in the previous subsection

yields many duplicate and redundant leaves. In the ordinary
2k-ary radix tree, an identical leaf node (i.e., the same FIB
entries) may redundantly span to multiple leaf nodes within
an internal node, up to 2k leaf nodes. Hence, the redundant
leaf nodes consume significant memory. In order to avoid
them, leafvec is introduced in the poptrie internal node. The
leafvec and base0 collectively serve as the base and the in-
direct index to locate the leaf node, which is similar to the
vector and base1 described in the previous section. The indi-
rect index with base offset using the leafvec and base0 omits
the redundant information as long as the redundant leaf slots
are contiguous. For example, if all the 64 slots in an internal
node contains the same value, it can be compressed to just
one leaf slot with only the least-significant bit in the leafvec
being 1. The indirect index for the leaf that corresponds to
the value n for the current chunk is calculated as the number
of 1s in the least-significant n + 1 bits in the leafvec. This
way, all the indirect indices for any value n fall into the first
leaf slot, making the efficient memory compression.

This mechanism also avoids the issue with so called hole-
punching, which sometimes prevent the leaves from being
contiguous, disabling the aforementioned efficient leaf com-
pression. In Poptrie, the contiguity is regained by making the
leaf slot irrelevant if there is a descendant internal node that
corresponds to the leaf slot. The lookup algorithm checks al-
ways the existence of the descendant internal node first, and
if there is one, the lookup never tracks back from the lower
level to the current level. Hence the leaf slot with a corre-
sponding descendant internal node is made irrelevant, and is
set to 0. Then, we may make the leaf slot contiguous again,
ignoring those leaf slots with corresponding descendant in-
ternal node, as shown in Figure 3.

The modification in the algorithm is shown in Algorithm 2.
Only the Line 14 is changed from Algorithm 1 so that it
checks the newly introduced leafvec field to compute the

4

One	  of	  the	  problem	  with	  the	  basic	  data	  structure	  
-‐  Redundant	  leaf	  nodes	  for	  prefixes	  that	  do	  not	  match	  k-‐bit	  boundary	  
-‐  e.g.,	  /1	  (/7,	  etc.	  as	  well)	  may	  create	  32	  redundant	  leaf	  nodes	  when	  k=6	
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Visualized	  Lookup	  Algorithm	  Example	Algorithm 2 The leaf compression algorithm; the dif-
ferences from the Algorithm 1. Only Line 14 is substi-
tuted.
14: bc = popcnt (t.N [index].leafvec & ((2ULL ≪ v) - 1));
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Figure 4: The data structure of Poptrie where
k = 2, and the lookup procedure for 0110b.

corresponding leaf index. An example of the lookup proce-
dure using leafvec is illustrated in Figure 4; an 8-bit address
01100111b is searched as follows: (a) It takes the first two
bits (01b) from the address, and then picks a bit correspond-
ing to this index (the second bit from the right). (b) It finds
the base address of the next subsequence of internal nodes
using the base1 member. (c) It counts the number of 1s in
the least significant two bits of the vector member minus
1 (= 1), and finds the next internal node. (d) It takes the
second two bits from the address (10b), and then picks a bit
corresponding to this index (the third bit from the right). The
bit is 0 in vector, so the search switches to find a leaf. (e) It
finds the base address for the corresponding leaf nodes from
base0. (f) It counts the number of 1s in the least significant
three bits of the leafvec minus 1 (= 0), and finally finds the
leaf node.

3.4 Direct Pointing
The depth (height) in Poptrie may grow as large as six in-

ternal node levels in the case of IPv4 address of length 32
bits and the 6-bits chunk length (k = 6). This depth can be
reduced if we allow some increase in memory footprint. As
we will see later in Section 4.1, most prefixes in the realis-
tic datasets are distributed in the range of prefix length from
/11 through /24. This means that the lookup algorithm of
Poptrie needs to traverse at least two internal nodes from its
root to reach a leaf node for most IP addresses. Hence, it
is common to conduct an optimization technique such that
the most significant s bits are just extracted to an array of
length 2s elements that points to the corresponding descen-
dant node or directly to the leaf node. Examples can be seen
in DIR-24-8-BASIC, DXR and SAIL.

With the s variable specifying how many of the most sig-
nificant bits should be used as the direct index. It enables us
to jump directly to the corresponding leaf or internal node,
by accessing the n-th elements in the top-level array, where
n is the value of the most significant s-bits in the given key.
The direct pointing increases the memory footprint by 4×2s

{
{
{

6bits

6bits

6bits

poptrie (s=0)

}root
internal node

FIB table

(a) Without Direct Pointing.

poptrie (s=12)

top-level array

Direct pointing

FIB table

(b) Direct Pointing.

Figure 5: Direct pointing (k = 6, s = 12).

Algorithm 3 The direct pointing algorithm; the differ-
ences from Algorithm 1. Line 1 and 2 in Algorithm 1
are replaced with the statements below.
1: index = extract (key, 0, t.s);
2: dindex = t.D[index].direct index;
3: if (dindex & (1UL ≪ 31)) then
4: return t.L[dindex & ((1UL ≪ 31) - 1)];
5: end if
6: index = dindex;
7: offset = t.s;

bytes at maximum in our implementation where the size of
each element in the top-level array is 4 bytes.

The modifications to Algorithm 1 are shown in
Algorithm 3. The value of the element in the top-level array
is called “direct index”. If the most significant bit is set in
the direct index, the remaining bits in the direct index point
to the leaf node directly. Otherwise, the direct index points
to the internal node and further search is necessary.

3.5 Incremental Update
Although compilation time of Poptrie from scratch, i.e.,

rebuilding the data structure entirely from the RIB, is short
(less than 70 milliseconds as shown later in Table 2), it is
generally desired to have a way to quickly update the FIB in-
crementally. The incremental update of Poptrie is performed
by replacing only the updated part of the trie.

Blocking the read access to Poptrie using write lock is
not acceptable because it blocks IP forwarding process for a
considerable amount of time. Hence, we opt for a lock-free
approach for the incremental update in Poptrie. In either
way, the data structure must be kept consistent all the time.
The strategy here is to let the IP forwarding process keep re-
ferring to the current (i.e., older) FIB while the construction
of the updated FIB is ongoing. When the update is finished,
the current FIB is switched to the new one, by changing the
pointer or the index of the FIB using an atomic instruction.
Since the FIB lookup is read-only procedure and we assume
the single-threaded update operation, the atomic instruction
can ensure the consistency. The simplicity of Poptrie en-
ables this approach on the various part and level of the data
structure.

5

For	  the	  desPnaPon	  address	  0110b	
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Algorithm 2 The leaf compression algorithm; the dif-
ferences from the Algorithm 1. Only Line 14 is substi-
tuted.
14: bc = popcnt (t.N [index].leafvec & ((2ULL ≪ v) - 1));
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Figure 4: The data structure of Poptrie where
k = 2, and the lookup procedure for 0110b.

corresponding leaf index. An example of the lookup proce-
dure using leafvec is illustrated in Figure 4; an 8-bit address
01100111b is searched as follows: (a) It takes the first two
bits (01b) from the address, and then picks a bit correspond-
ing to this index (the second bit from the right). (b) It finds
the base address of the next subsequence of internal nodes
using the base1 member. (c) It counts the number of 1s in
the least significant two bits of the vector member minus
1 (= 1), and finds the next internal node. (d) It takes the
second two bits from the address (10b), and then picks a bit
corresponding to this index (the third bit from the right). The
bit is 0 in vector, so the search switches to find a leaf. (e) It
finds the base address for the corresponding leaf nodes from
base0. (f) It counts the number of 1s in the least significant
three bits of the leafvec minus 1 (= 0), and finally finds the
leaf node.

3.4 Direct Pointing
The depth (height) in Poptrie may grow as large as six in-

ternal node levels in the case of IPv4 address of length 32
bits and the 6-bits chunk length (k = 6). This depth can be
reduced if we allow some increase in memory footprint. As
we will see later in Section 4.1, most prefixes in the realis-
tic datasets are distributed in the range of prefix length from
/11 through /24. This means that the lookup algorithm of
Poptrie needs to traverse at least two internal nodes from its
root to reach a leaf node for most IP addresses. Hence, it
is common to conduct an optimization technique such that
the most significant s bits are just extracted to an array of
length 2s elements that points to the corresponding descen-
dant node or directly to the leaf node. Examples can be seen
in DIR-24-8-BASIC, DXR and SAIL.

With the s variable specifying how many of the most sig-
nificant bits should be used as the direct index. It enables us
to jump directly to the corresponding leaf or internal node,
by accessing the n-th elements in the top-level array, where
n is the value of the most significant s-bits in the given key.
The direct pointing increases the memory footprint by 4×2s
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}root
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(a) Without Direct Pointing.
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Figure 5: Direct pointing (k = 6, s = 12).

Algorithm 3 The direct pointing algorithm; the differ-
ences from Algorithm 1. Line 1 and 2 in Algorithm 1
are replaced with the statements below.
1: index = extract (key, 0, t.s);
2: dindex = t.D[index].direct index;
3: if (dindex & (1UL ≪ 31)) then
4: return t.L[dindex & ((1UL ≪ 31) - 1)];
5: end if
6: index = dindex;
7: offset = t.s;

bytes at maximum in our implementation where the size of
each element in the top-level array is 4 bytes.

The modifications to Algorithm 1 are shown in
Algorithm 3. The value of the element in the top-level array
is called “direct index”. If the most significant bit is set in
the direct index, the remaining bits in the direct index point
to the leaf node directly. Otherwise, the direct index points
to the internal node and further search is necessary.

3.5 Incremental Update
Although compilation time of Poptrie from scratch, i.e.,

rebuilding the data structure entirely from the RIB, is short
(less than 70 milliseconds as shown later in Table 2), it is
generally desired to have a way to quickly update the FIB in-
crementally. The incremental update of Poptrie is performed
by replacing only the updated part of the trie.

Blocking the read access to Poptrie using write lock is
not acceptable because it blocks IP forwarding process for a
considerable amount of time. Hence, we opt for a lock-free
approach for the incremental update in Poptrie. In either
way, the data structure must be kept consistent all the time.
The strategy here is to let the IP forwarding process keep re-
ferring to the current (i.e., older) FIB while the construction
of the updated FIB is ongoing. When the update is finished,
the current FIB is switched to the new one, by changing the
pointer or the index of the FIB using an atomic instruction.
Since the FIB lookup is read-only procedure and we assume
the single-threaded update operation, the atomic instruction
can ensure the consistency. The simplicity of Poptrie en-
ables this approach on the various part and level of the data
structure.

5

Lookup	  s	  bits	  at	  the	  first	  stage	  (like	  other	  algorithms)	
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Performance	  EvaluaPon	  for	  Real	  
Traffic	  (WIDE	  Transit)	
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Detailed	  Analysis	  on	  CPU	  Cycles	  
per	  Lookup	  for	  Random	  Traffic	
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Structural	  Scalability	
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Figure 12: The average lookup rate for real-trace
on REAL-RENET.

ior should diverge, since the second stage of each algorithm
is different while the first stage is similar in SAIL, DXR, and
Poptrie. Hence, we investigate each case per binary radix
depth. Figure 11 shows the CPU cycle distribution for each
binary radix depth. The wick of each candlestick represents
5th/95th percentile, the body represents the first and third
quartile values, and the internal bar represents the median
value. This figure demonstrates a significant difference at
greater binary radix depth; for example, the 95th percentiles
of Poptrie18 are no more than 172 cycles for any binary radix
depth while those of SAIL and DXR exceed 234 cycles at
the binary radix depth of 24 and 25. Overall, Poptrie suc-
ceeded in maintaining the lower number of CPU cycles in
various cases, gaining superior performance. We found the
similar trend also for the dataset REAL-Tier1-B. When the
binary radix depth is smaller than 16, all algorithms kept the
CPU cycles consistently small, less than 50. Interestingly,
the median of D16R is larger than that of the others. As
shown in Figure 10 before, we also see the small difference
in the distributions between D16R and Poptrie16 around 22
cycles. We suspect that this can be attributed to the DXR’s
behavior; the binary search for its range table accesses mem-
ory many times so that the data structure for smaller binary
radix depth are hard to keep in the L2 cache.

4.7 Performance Evaluation with a Real In-
ternet Traffic Trace

Figure 12 shows the average lookup rate for real-trace
on REAL-RENET. Poptrie18 is 1.61 and 1.22 times faster
than D18R and SAIL, respectively. Additionally, we also
confirm that Poptrie18 outperforms both DXR (D16R and
D18R) and SAIL for real-trace on all the other RIB
datasets although real-trace should be a different pattern
from the real traffic on the other RIB datasets.

The lookup rates of Poptrie and DXR for real-trace are
degraded compared to those for random. This is because
a larger number of packets goes to IGP routes that are gen-
erally more specific than BGP routes in real-trace. 32.5%
of the packets in real-trace on REAL-RENET have the

Table 5: The lookup rates of each algorithm in
Mlps for random traffic on synthetic large RIBs.

Algorithm SYN1 SYN1 SYN2 SYN2
-Tier1-A -Tier1-B -Tier1-A -Tier1-B

SAIL 102.86 99.98 N/A N/A
D18R (modified) 115.45 117.48 102.59 104.22
Poptrie18 188.02 187.69 174.42 175.04

binary radix depth more than 18, while for the whole IPv4
address space only 22.1% have the binary radix depth more
than 18. These addresses cannot be looked up in the first
stage of the algorithm of poptrie18 and D18R. Moreover,
21.8% of the packets of real-trace have binary radix depth
more than 24, while only 1.66% of the whole IPv4 address
space have binary radix depth more than 24.

SAIL performs better in the lookup rate for real-trace
than for random. This is because SAIL could take advan-
tage of the CPU cache due to the locality of the destination
IP addresses, i.e., the sequences of packets with the identical
destination IP address.

4.8 Scalability
We measure the performance on the synthetic RIBs (i.e.,

those with ’SYN’ prefix) to evaluate the scalability to future
routing table growth. SAIL cannot compile SYN2-Tier1-A
and SYN2-Tier1-B due to its structural limitation; C16[i] in
SAIL is encoded in the 15 bits of BCN [i], but it exceeds
215 for these datasets. The DXR also exceeds its structural
limitation of the number of ranges that is supported up to
219. However, we can extend it to 220 by absorbing one
bit for the “short” format flag to the address range index.
Thus, we modified DXR and conducted the evaluation. The
structural scalability of Poptrie is discussed in Section 5.

The average lookup rates of each algorithm for the ran-
dom traffic pattern on the synthetic RIBs are summarized
in Table 5. Poptrie18 outperforms SAIL and D18R, and
the lookup rate of Poptrie18 exceeds the 100 GbE wire-rate,
148.8 Mlps, for these RIBs, while DXR slows down to
102.59 Mlps for SYN2-Tier1-A. Thus, Poptrie is scalable
to the routing table growth in lookup performance.

4.9 Update Performance
We also evaluate the performance of updating the

Poptrie18 data structure. The update is first performed to the
radix tree for the RIB maintenance, and then replaces a part
of the trie in Poptrie, as described in Section 3.5. We use four
15 minute update archive files (i.e., an hour in total) of RV-
linx-p52 to evaluate the update performance. This dataset
contains 23,446 route updates (18,141 announced and 5,305
withdrawn) in 7,824 messages.

The average number of replacements for the top-level ar-
ray in direct pointing, the leaf node, and the internal node,

11

Table 1: RIB Datasets; the name, number of prefixes, and number of distinct next hops.
Name # of # of Name # of # of Name # of # of

prefixes nhops prefixes nhops prefixes nhops

RV-linx-p46 † 518,231 308 RV-saopaulo-p12 ‡ 516,536 510 RV-singapore-p3 † 518,620 136
RV-linx-p50 † 512,476 410 RV-saopaulo-p13 ‡ 517,914 504 RV-singapore-p5 † 516,557 129
RV-linx-p52 † 514,590 419 RV-saopaulo-p16 † 521,405 528 RV-sydney-p0 † 520,580 122
RV-linx-p57 † 514,070 142 RV-saopaulo-p18 ‡ 521,874 522 RV-sydney-p1 † 515,809 125
RV-linx-p60 † 508,700 70 RV-saopaulo-p2 ‡ 523,092 530 RV-sydney-p3 † 517,511 115
RV-linx-p61 † 512,476 149 RV-saopaulo-p20 ‡ 523,574 470 RV-sydney-p4 † 519,246 86
RV-nwax-p1 † 519,224 60 RV-saopaulo-p23 ‡ 523,013 517 RV-sydney-p9 † 523,400 127
RV-nwax-p2 † 514,627 46 RV-saopaulo-p25 ‡ 532,637 523 RV-telxatl-p3 ‡ 511,161 56
RV-nwax-p5 † 519,195 49 RV-saopaulo-p26 ‡ 516,408 479 RV-telxatl-p6 ‡ 519,537 42
RV-paixisc-p12 † 519,142 68 RV-saopaulo-p8 ‡ 522,296 477 RV-telxatl-p7 ‡ 513,339 49
RV-paixisc-p14 † 524,168 49 RV-saopaulo-p9 ‡ 515,639 507
REAL-Tier1-A ∗ 531,489 13 SYN1-Tier1-A 764,847 45 SYN2-Tier1-A 885,645 87
REAL-Tier1-B ∗ 524,170 9 SYN1-Tier1-B 756,406 19 SYN2-Tier1-B 876,944 33
REAL-RENET ⋄ 516,100 32

† Snapshot of 2014-12-17 00:00 UTC, ‡ Snapshot of 2014-12-16 23:00 UTC, ∗ Obtained on Jan. 9, 2015, ⋄ Obtained on Jan. 3, 2015.
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Figure 7: The heat map of the binary radix
depth for all 232 IPv4 addresses on REAL-Tier1-
A. x-axis is the matched prefix’s prefix length.
y-axis is the length of checked bits.

to the next hop assignment policies.
It is worth noting that in general, the number of bits

checked in the longest prefix matching is larger than the
prefix length of individual routes. This is due to the other
longer prefixes that are neighboring to the prefix in the ad-
dress space. We call the number of bits (equivalently, the
depth to search in the binary radix tree) that is necessary to
decide the resulting longest matching prefix “binary radix
depth”. The binary radix depth is possibly deeper than the
prefix length as shown in Figure 7. We see a number of cases
where deeper search is required to decide the shorter longest
matching prefix. For example, there are many cases where it
is necessary to search down to the 24th level to decide that
the matching prefix is only /8. This influences the perfor-
mance of lookup technologies shown in the later sections.

4.2 Traffic Patterns
We take the following traffic patterns into consideration

for the lookup performance evaluation: random, sequen-

tial, repeated, and real-trace. The first three are syn-
thetic ones, and the last one is real traffic.

For random traffic pattern, 232 random IP addresses are
generated using xorshift [19]. Each random number is gen-
erated just before the lookup routine to minimize the cache
pollution, rather than preparing an array of random num-
bers in advance like other studies do. The measured av-
erage overhead of the random number generator was 1.22
nanoseconds per generation. Note that we did not exclude
this overhead from the results. For sequential, 232 ad-
dresses from 0.0.0.0 to 255.255.255.255 are queried se-
quentially. Technologies tend to show better performance
for sequential because of the absence of random number
generation, and the higher possibility of cache hit in search-
ing down the same part of the tree. Repeated is similar
to random except that each random number address is re-
peated 16 times (total 16 × 232 lookups).

Real-trace is a real Internet traffic trace, captured on
December 16, 2014 in a research and educational network
for 15 minutes. The trace was captured on a transit link of
the same AS border router that produced the REAL-RENET
dataset. We excluded an IP address that probes the entire
IPv4 address space with a large amount of experimental
ICMP packets4. The packets accounted for 24.4% of the to-
tal IPv4 packets in the trace. The number of IPv4 packets in
this trace (after the filtering) is 97,126,495 with 644,790 dis-
tinct destination IPv4 addresses. In the evaluation, we load
all the destination IP addresses of real-trace into an array
in memory in advance, and issue the lookup queries one by
one in sequence.

4.3 Effect of Extensions in Poptrie
We first evaluate the effectiveness of the extensions and

the design options of Poptrie. They are labeled “basic” (Sec-
tion 3.1), “leafvec” (Section 3.3), and “s” (the parameter
for direct pointing, described in Section 3.4). Using REAL-
Tier1-A, we measured the number of internal nodes (labeled

4USC ANT project: http://www.isi.edu/ant/address/
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RV-linx-p61 † 512,476 149 RV-saopaulo-p20 ‡ 523,574 470 RV-sydney-p4 † 519,246 86
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Figure 7: The heat map of the binary radix
depth for all 232 IPv4 addresses on REAL-Tier1-
A. x-axis is the matched prefix’s prefix length.
y-axis is the length of checked bits.

to the next hop assignment policies.
It is worth noting that in general, the number of bits

checked in the longest prefix matching is larger than the
prefix length of individual routes. This is due to the other
longer prefixes that are neighboring to the prefix in the ad-
dress space. We call the number of bits (equivalently, the
depth to search in the binary radix tree) that is necessary to
decide the resulting longest matching prefix “binary radix
depth”. The binary radix depth is possibly deeper than the
prefix length as shown in Figure 7. We see a number of cases
where deeper search is required to decide the shorter longest
matching prefix. For example, there are many cases where it
is necessary to search down to the 24th level to decide that
the matching prefix is only /8. This influences the perfor-
mance of lookup technologies shown in the later sections.

4.2 Traffic Patterns
We take the following traffic patterns into consideration

for the lookup performance evaluation: random, sequen-

tial, repeated, and real-trace. The first three are syn-
thetic ones, and the last one is real traffic.

For random traffic pattern, 232 random IP addresses are
generated using xorshift [19]. Each random number is gen-
erated just before the lookup routine to minimize the cache
pollution, rather than preparing an array of random num-
bers in advance like other studies do. The measured av-
erage overhead of the random number generator was 1.22
nanoseconds per generation. Note that we did not exclude
this overhead from the results. For sequential, 232 ad-
dresses from 0.0.0.0 to 255.255.255.255 are queried se-
quentially. Technologies tend to show better performance
for sequential because of the absence of random number
generation, and the higher possibility of cache hit in search-
ing down the same part of the tree. Repeated is similar
to random except that each random number address is re-
peated 16 times (total 16 × 232 lookups).

Real-trace is a real Internet traffic trace, captured on
December 16, 2014 in a research and educational network
for 15 minutes. The trace was captured on a transit link of
the same AS border router that produced the REAL-RENET
dataset. We excluded an IP address that probes the entire
IPv4 address space with a large amount of experimental
ICMP packets4. The packets accounted for 24.4% of the to-
tal IPv4 packets in the trace. The number of IPv4 packets in
this trace (after the filtering) is 97,126,495 with 644,790 dis-
tinct destination IPv4 addresses. In the evaluation, we load
all the destination IP addresses of real-trace into an array
in memory in advance, and issue the lookup queries one by
one in sequence.

4.3 Effect of Extensions in Poptrie
We first evaluate the effectiveness of the extensions and

the design options of Poptrie. They are labeled “basic” (Sec-
tion 3.1), “leafvec” (Section 3.3), and “s” (the parameter
for direct pointing, described in Section 3.4). Using REAL-
Tier1-A, we measured the number of internal nodes (labeled

4USC ANT project: http://www.isi.edu/ant/address/

7

RIB	  dataset	  (synthe/c	  RIB	  dataset)	

Lookup	  performance	  for	  random	  traffic	  [Mlps]	

April	  9th,	  2015	 H.	  Asai,	  "Networking	  OperaPng	  System	  from	  Scratch"	 45	



Interim	  Summary	

n  Fast	  IP	  rouPng	  table	  lookup	  
p  914	  Mlps	  w/	  4	  core	  

u Global	  Per-‐1	  ISP’s	  full	  route	  (531k	  routes)	  
u Random	  traffic	  

p  175	  Mlps	  per	  core	  
u SynthePc	  800k	  routes	  
u Random	  traffic	  
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Ongoing	  Project	
n  Socket	  API	  extension	  for	  middleboxes/VNF	  (Virtualized	  
Network	  FuncPon)	  
p  Virtual	  machine	  ←	  ETSI’s	  approach	  

u  Network	  abstracPon:	  Virtual	  NIC	  
–  Pros:	  Any	  kinds	  of	  OS	  works	  
–  Cons:	  Overhead	  of	  virtualizaPon	  (incl.	  VMEntry/VMExit)	  

p  Container	  
u  Network	  abstracPon:	  Virtual	  NIC	  

–  Pros:	  Linux	  works	  (when	  we	  use	  Linux	  Container)	  
–  Cons:	  Overhead	  of	  virtualized	  NIC	  driver	  

p  Process	  ß	  My	  focus	  
u  Network	  abstracPon:	  Socket	  API	  

–  Pros:	  No	  overhead	  (a	  few	  scheduler	  overhead)	  in	  my	  design	  
–  Cons:	  Socket	  API	  is	  not	  good	  for	  packet	  processing	  
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Non-‐TCP/UDP	  Socket	
n  ExisPng	  socket	  /	  IPPROTO	  

p  SOCK_RAW	  
u Privileged	  socket…	  

p  SOCK_DGRAM	  (IPPROTO_UDP)	  /	  SOCK_STREAM	  
(IPPROTO_TCP)	  

u Basically	  UDP/TCP	  (Cannot	  handle	  Ethernet,	  IP)	  
n  Socket	  

p  SOCK_DGRAM	  +	  IPPROTO_ETHERNET	  (IPPROTO?)	  
u Bind	  a	  MAC	  address	  

p  SOCK_DGRAM	  +	  IPPROTO_IP	  (IPPROTO?)	  
u Bind	  an	  IP	  address	
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Conclusion	

n  VFSR:	  Very	  Fast	  Soaware	  Router	  
p  EssenPal	  Components	  

1.  Fast	  packet	  forwarding	  
–  High-‐rate	  per	  core/port	  for	  in-‐order	  processing	  

2.  Fast	  IP	  rouPng	  table	  lookup	  
–  #	  of	  routes:	  >512k	  (envisioning	  >800k)	  
–  High-‐rate	  per	  core	  for	  in-‐order	  processing	  

n  Socket	  API	  extension	  for	  process-‐based	  NFV	  
p  as	  ongoing	  work	  
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