
Networking	
 Opera/ng	
 System	
 from	
 Scratch	

towards	
 High-­‐Performance	
 COTS	
 Network	
 Facili/es	

Hirochika	
 Asai	
 <panda@jar.jp>	

The	
 University	
 of	
 Tokyo	

IIJ-­‐II	
 Seminar,	
 Tokyo,	
 Japan	

April	
 9,	
 2015	

<	
 Packet-­‐based	
 Informa/on	
 Chaining	
 Service	
 (pix)	
 >	

Biography	

n  Hirochika	
 Asai	
 (panda)	

p  Professional	
 history	

u  2013:	
 Received	
 Ph.D	
 in	
 InformaPon	
 Science	
 and	
 Technology	
 from	

the	
 UnivesPy	
 of	
 Tokyo	

–  “Analysis	
 and	
 Management	
 of	
 the	
 Internet	
 based	
 on	
 Data	
 Flow	
 Profiling”	

u  2013-­‐now:	
 Project	
 Assistant	
 Professor	
 at	
 the	
 University	
 of	
 Tokyo	

u  2014-­‐now:	
 Board	
 member	
 of	
 WIDE	
 Project	

p  Research	
 interests	

u  OperaPng	
 system	
 (networking)	

–  had	
 been	
 my	
 hobby…	

u  Distributed	
 system	
 (especially	
 Internet-­‐wide	
 system)	

u  Internet	
 traffic	
 and	
 topology	
 analysis	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 2	

Trends	
 on	
 Network	
 FuncPonaliPes	

by	
 Soaware	
 on	
 COTS	
 hardware	

n  SDN:	
 Soaware	
 Defined	
 Network	

p  SeparaPon	
 of	

u Forwarding	
 Plane;	
 by	
 hardware	

u Control	
 Plane;	
 by	
 soaware	

n  NFV:	
 Network	
 FuncPon	
 VirtualizaPon	

p Network	
 funcPon	
 by	
 soaware	
 with	
 virtualizaPon	

technologies	
 (e.g.,	
 virtual	
 machine,	
 container,	

process)	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 3	

Networking	
 OperaPng	
 System	

n  “OperaPng	
 System”	
 (OS)	

p  Fundamental	
 system	
 soaware	
 in	
 charge	
 of	

u Resource	
 management	
 (hardware/soaware)	

u ProtecPon,	
 Filesystem,	
 mulPtasking	
 etc.	

n  COTS	
 Network	
 FaciliPes	
 (using	
 generic	
 CPU)	

=	
 Networking	
 Opera/ng	
 System	

p  Inexpensive	

p  Flexible	

p  Extensible	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 4	

DeparPng	
 from	
 Generic	
 OS	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 5	

CPU	

Memory	

NIC	

TCP/IP	

NIC	
 Driver	

User	
 App.	

skbuff	
 syscall	

socket	

Kernel	

Fat	
 kernel,	
 many	
 overhead,	
 dirty-­‐slate	

Clean-­‐slate	
 approach	

Generic	
 OS:	
 Not	
 designed	
 for	
 networking	
 faciliPes	

Networking	
 OperaPng	
 System	

from	
 Scratch	

n  “from	
 scratch”	

1.  Evaluate	
 the	
 best	
 performance	
 of	
 COTS	

hardware	

u Bolleneck	
 analysis	

2.  Design	
 new	
 algorithm/architecture	

u Scheduler	

u Memory	
 management	

u ProtecPon	

u Protocol	
 stack	

u RouPng	
 table	
 lookup	
 algorithm	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 6	

Towards	
 High-­‐Performance	
 Network	

Facili/es	
 with	
 COTS	
 hardware	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 7	

Network	
 FaciliPes	
 with	
 COTS	
 hardware	

n  Background	

p  Generic	
 CPU	
 (IA)	
 for	
 packet	
 processing	

p  PCIe	
 NIC	
 for	
 packet	
 forwarding	

n  Goal:	
 High-­‐performance	
 network	
 faciliPes	
 w/	

soaware	

p  Router:	
 40GbE/100GbE	
 line-­‐rate	
 rouPng	
 (1M	
 RiB	

entries)	

p  Middlebox:	
 Firewall,	
 Load-­‐balancer,	
 etc.	

p  Server	
 apps:	
 HTTP,	
 AuthenPcaPon,	
 AccounPng,	
 etc.	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 8	

Network	
 FaciliPes	
 with	
 COTS	
 hardware	

n  Background	

p  Generic	
 CPU	
 (IA)	
 for	
 packet	
 processing	

p  PCIe	
 NIC	
 for	
 packet	
 forwarding	

n  Goal:	
 High-­‐performance	
 network	
 faciliPes	
 w/	

soaware	

p  Router:	
 40GbE/100GbE	
 line-­‐rate	
 rouPng	
 (1M	
 RiB	

entries)	

p  Middlebox:	
 Firewall,	
 Load-­‐balancer,	
 etc.	

p  Server	
 apps:	
 HTTP,	
 AuthenPcaPon,	
 AccounPng,	
 etc.	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 9	

VFSR:	
 Very	
 Fast	
 Soaware	
 Router	

n  EssenPal	
 Components	

1.  Fast	
 packet	
 forwarding	

u High-­‐rate	
 per	
 core/port	
 for	
 in-­‐order	
 processing	

2.  Fast	
 IP	
 rouPng	
 table	
 lookup	

u #	
 of	
 routes:	
 >512k	
 (envisioning	
 >800k)	

u High-­‐rate	
 per	
 core	
 for	
 in-­‐order	
 processing	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 10	

Key	
 Numerical	
 Values	
 of	
 “fast”:	

Packet	
 Rate	
 for	
 10/40/100GbE	

n  Ethernet	

p Minimum	
 frame	
 length:	
 64-­‐Byte	

(=Maximum	
 frame	
 rate)	

u 1GbE:	
 1.488Mpps	

=	
 672	
 ns/packet	

u 10GbE:	
 14.88Mpps	

=	
 67.2	
 ns/packet	

u 40GbE:	
 59.52Mpps	

=	
 16.8	
 ns/packet	

u 100GbE:	
 148.8Mpps	

=	
 6.72	
 ns/packet	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 11	

VFSR:	
 Very	
 Fast	
 Soaware	
 Router	

n  EssenPal	
 Components	

1.  Fast	
 packet	
 forwarding	

u High-­‐rate	
 per	
 core/port	
 for	
 in-­‐order	
 processing	

2.  Fast	
 IP	
 rouPng	
 table	
 lookup	

u #	
 of	
 routes:	
 >512k	
 (envisioning	
 >800k)	

u High-­‐rate	
 per	
 core	
 for	
 in-­‐order	
 processing	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 12	

Myths	
 on	
 Packet	
 Forwarding	

n  Bollenecks	
 in	
 packet	
 forwarding	

p  CPU	
 is	
 slow.	

u Yes,	
 for	
 packet	
 processing,	
 but	
 forwarding	
 requires	
 only	

a	
 set	
 of	
 simple	
 instrucPons	

–  e.g.,	
 0.3	
 ns	
 /	
 CPU	
 cycle	
 @	
 3.3GHz	
 CPU	

p Memory	
 copy	
 is	
 so	
 heavy.	

u At	
 least,	
 throughput	
 is	
 enough.	

–  e.g.,	
 DDR3-­‐1866	
 Dual	
 Channel:	
 29.867GB/s	
 (238.933Gbps)	
 	

p  Interrupts	
 incur	
 excessive	
 overheads.	

u Not	
 excessive,	
 but	
 non-­‐negligible	
 for	
 100	
 GbE	

–  Discuss	
 this	
 later	

13	
H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
April	
 9th,	
 2015	

Myths	
 on	
 Packet	
 Forwarding	

n  Bollenecks	
 in	
 packet	
 forwarding	

p  CPU	
 is	
 slow.	

u Yes,	
 for	
 packet	
 processing,	
 but	
 forwarding	
 requires	
 only	

a	
 set	
 of	
 simple	
 instrucPons	

–  e.g.,	
 0.3	
 ns	
 /	
 CPU	
 cycle	
 @	
 3.3GHz	
 CPU	

p Memory	
 copy	
 is	
 so	
 heavy.	

u At	
 least,	
 throughput	
 is	
 enough.	

–  e.g.,	
 DDR3-­‐1866	
 Dual	
 Channel:	
 29.867GB/s	
 (238.933Gbps)	
 	

p  Interrupts	
 incur	
 excessive	
 overheads.	

u Not	
 excessive,	
 but	
 non-­‐negligible	
 for	
 100	
 GbE	

–  Discuss	
 this	
 later	

14	
H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
April	
 9th,	
 2015	

Myths	
 on	
 Packet	
 Forwarding	

n  Bollenecks	
 in	
 packet	
 forwarding	

p  CPU	
 is	
 slow.	

u Yes,	
 for	
 packet	
 processing,	
 but	
 forwarding	
 requires	
 only	

a	
 set	
 of	
 simple	
 instrucPons	

–  e.g.,	
 0.3	
 ns	
 /	
 CPU	
 cycle	
 @	
 3.3GHz	
 CPU	

p Memory	
 copy	
 is	
 so	
 heavy.	

u At	
 least,	
 throughput	
 is	
 enough.	

–  e.g.,	
 DDR3-­‐1866	
 Dual	
 Channel:	
 29.867GB/s	
 (238.933Gbps)	
 	

p  Interrupts	
 incur	
 excessive	
 overheads.	

u Not	
 excessive,	
 but	
 non-­‐negligible	
 for	
 100	
 GbE	

–  Discuss	
 this	
 later	

15	
H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
April	
 9th,	
 2015	

Myths	
 on	
 Packet	
 Forwarding	

n  Bollenecks	
 in	
 packet	
 forwarding	

p  CPU	
 is	
 slow.	

u Yes,	
 for	
 packet	
 processing,	
 but	
 forwarding	
 requires	
 only	

a	
 set	
 of	
 simple	
 instrucPons	

–  e.g.,	
 0.3	
 ns	
 /	
 CPU	
 cycle	
 @	
 3.3GHz	
 CPU	

p Memory	
 copy	
 is	
 so	
 heavy.	

u At	
 least,	
 throughput	
 is	
 enough.	

–  e.g.,	
 DDR3-­‐1866	
 Dual	
 Channel:	
 29.867GB/s	
 (238.933Gbps)	
 	

p  Interrupts	
 incur	
 excessive	
 overheads.	

u Not	
 excessive,	
 but	
 non-­‐negligible	
 for	
 100	
 GbE	

–  Discuss	
 this	
 later	

16	
H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
April	
 9th,	
 2015	

Real	
 Bolleneck	
 on	
 Packet	
 Forwarding	

n  PCIe	
 device	
 register	
 access	

=	
 Memory	
 Mapped	
 I/O	
 (MMIO)	

–  No	
 cache	

u  ~250ns/access	
 [Miller	
 et	
 al.	
 ACM	
 ANCS	
 ’09]	

p  Read	

u  1529.17	
 cycles	
 /	
 read	

u  392.1	
 ns	
 /	
 read	

p  Write	

u  282.621	
 cycles	
 /	
 write	

u  72.47	
 ns	
 /	
 write	

※Measure	
 CPU	
 cycles	
 to	
 access	
 to	
 the	
 same	
 register	

1	
 million	
 Pmes	
 by	
 Performance	
 Monitoring	
 Counter	
 (PMC)	

CPU:	
 Intel	
 Core	
 i7	
 4770K	

Memory:	
 Corsair	
 DDR3-­‐1866	
 8GB	
 x4	

NIC:	
 Intel	
 X520-­‐DA2	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 17	

Review:	
 Generic	
 NIC	
 Architecture	

18	

Ring	
 buffer	

Descriptors	
 Buffer	

H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
April	
 9th,	
 2015	

Review:	
 Generic	
 NIC	
 Architecture	

19	

Ring	
 buffer	

Descriptors	
 Buffer	

Packet	
 recep/on	

1.  NIC	
 receives	
 a	
 packet	

2.  NIC	
 transfer	
 the	
 packet	
 data	
 to	

a	
 buffer	
 in	
 RAM	
 via	
 DMA	

3.  NIC	
 proceeds	
 the	
 head	
 pointer	

4.  Soaware	
 processes	
 the	
 packet	

5.  Soaware	
 proceeds	
 the	
 tail	

pointer	
 to	
 release	
 the	
 packet	

(3)	
 head	

(2)	

(5)	
 tail	

H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
April	
 9th,	
 2015	

Review:	
 Generic	
 NIC	
 Architecture	

20	

Ring	
 buffer	

Descriptors	
 Buffer	

Packet	
 transmission	

1.  Soaware	
 writes	
 a	
 packet	
 to	
 a	

buffer	
 in	
 RAM	

2.  Soaware	
 proceeds	
 the	
 tail	

pointer	
 to	
 commit	
 the	
 packet	

3.  NIC	
 transfer	
 the	
 packet	
 data	

from	
 the	
 buffer	
 in	
 RAM	
 via	

DMA	

4.  NIC	
 transmit	
 the	
 packet	

5.  NIC	
 proceeds	
 the	
 head	
 pointer	

to	
 noPfy	
 the	
 packet	
 is	

transmiled	

(2)	
 tail	

(1)	

(5)	
 head	

H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
April	
 9th,	
 2015	

Review:	
 Generic	
 NIC	
 Architecture	

21	

Ring	
 buffer	

Descriptors	
 Buffer	

Packet	
 recep/on	

1.  NIC	
 receives	
 a	
 packet	

2.  NIC	
 transfer	
 the	
 packet	
 data	
 to	

a	
 buffer	
 in	
 RAM	
 via	
 DMA	

3.  NIC	
 proceeds	
 the	
 head	
 pointer	

4.  Soaware	
 processes	
 the	
 packet	

5.  Soaware	
 proceeds	
 the	
 tail	

pointer	
 to	
 release	
 the	
 packet	

(3)	
 head	

(2)	

(5)	
 tail	

H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
April	
 9th,	
 2015	

Review:	
 Generic	
 NIC	
 Architecture	

22	

Ring	
 buffer	

Descriptors	
 Buffer	

Packet	
 transmission	

1.  Soaware	
 writes	
 a	
 packet	
 to	
 a	

buffer	
 in	
 RAM	

2.  Soaware	
 proceeds	
 the	
 tail	

pointer	
 to	
 commit	
 the	
 packet	

3.  NIC	
 transfer	
 the	
 packet	
 data	

from	
 the	
 buffer	
 in	
 RAM	
 via	

DMA	

4.  NIC	
 transmit	
 the	
 packet	

5.  NIC	
 proceeds	
 the	
 head	
 pointer	

to	
 noPfy	
 the	
 packet	
 is	

transmiled	

(2)	
 tail	

(1)	

(5)	
 head	

H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
April	
 9th,	
 2015	

Polling	
 &	
 Bulk	
 Processing	

(Transmission,	
 Intel®	
 X520)	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 23	

txq_tail = 0;
for (;;) {

txq_head = read_txq_head();
/* Available Tx queue length */
txq_len = txq_sz

- (txq_sz - txq_head + txq_tail) % txq_sz;
/* Check the available Tx queue length */
if (txq_len < n) continue;
for (i = 0; i < n; i++) {

// Set packet to the ring buffer to txq_tail
txq_ring[txq_tail].pkt = pkt_to_transmit;
txq_tail = (txq_tail + 1) % txq_sz

}
/* Commit */
write_txq_tail(txq_tail);

}	

~392.1ns	

~72.47ns	

Note:	
 Can	
 be	

opPmized…	

Tx	
 Performance	
 by	
 bulk	
 size	

(Intel®	
 X520)	

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

Pa
ck

et
 ra

te
 [M

pp
s]

Bulk transfer size [packets]

Frame = 64B
96B

128B
192B
256B
384B
512B
768B

1024B
1536B

14.88Mpps	

=	
 n	

~500ns/packet	

~250ns/packet	

~125ns/packet	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 24	

Note:	
 Also	
 confirmed	
 59.52	
 Mpps	
 Tx	
 (2	
 Intel®	
 X520-­‐DA2)	
 @	
 1	
 core	
 from	
 Intel®	
 Core	
 i7-­‐4770K	

Intel®	
 XL710’s	
 OperaPon	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 25	

Host	

NIC	
 (PCIe)	

(1)	

(1) Write	
 the	
 tail	
 pointer	
 (MMIO	
 write)	

(2)  Transfer	
 the	
 packets	
 via	
 DMA	

(3) Write-­‐back	
 the	
 transfer	
 status	

(2)	

Transmission	

(3)	

Recep/on	

(1)	

(1)  Transfer	
 the	
 packets	
 via	
 DMA	
 with	
 status	

(2) Write	
 the	
 tail	
 pointer	
 (MMIO	
 write)	

(2)	

Polling	
 &	
 Bulk	
 Processing	

(Transmission,	
 Intel®	
 XL710)	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 26	

txq_tail = 0;
for (;;) {

completed = check_wb_status(txq_tail, n);
/* Check the transmission is completed */
if (!completed) continue;
for (i = 0; i < n; i++) {

// Set packet to the ring buffer to txq_tail
txq_ring[txq_tail].pkt = pkt_to_transmit;
txq_tail = (txq_tail + 1) % txq_sz

}
/* Commit */
write_txq_tail(txq_tail);

}	

PCIe	
 MMIO	

Note:	
 Can	
 be	

opPmized…	

Intel®	
 XL710’s	
 performance	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 27	

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6

M
pp

s

Bulk size

#QP = 1
#QP = 2
#QP = 3
Line-rate

Same	
 Strategy	
 for	
 Forwarding	

(RouPng	
 for	
 1	
 route)	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 28	

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600

Th
ro

ug
hp

ut
 [G

bp
s]

Frame size [byte]

My implementation
Linux

Line rate

※1	
 route	

　TTL	
 and	
 checksum	
 calculaPon	

	
 	
 	
 are	
 done	
 by	
 CPU	

Transmitter Router
RX TX

RX

untag

untag

untag

Hardware	
 switch	

(interface	
 counter	
 for	
 evaluaPon)	

Transmiler	
 (pix)	
 Router	
 (pix)	

Bulk	
 polling	
 &	
 transmission	

(dynamic	
 bulk	
 size	
 =	
 received	
 queue	
 length)	

Latency	
 measurement	

n  Experimental	
 setup	

p  Tester	

u Spirent	
 CommunicaPons	
 Spirent	
 TestCenter	

–  Chassis:	
 SPT-­‐N4U-­‐110	

– Module:	
 CV-­‐10G-­‐S8	
 	

u Supported	
 by	
 株式会社東陽テクニカ様	
 during	
 Interop	

Tokyo	
 2014	

H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 29	
April	
 9th,	
 2015	

Low	
 Latency	

1	

10	

100	

1000	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

La
te
nc
y	

[u
s]
	

Test	
 traffic	
 (64-­‐byte	
 frame)	
 [Gbps]	

avg	

min	

max	

Low	
 latency（~10us）for	
 90%	
 of	
 line-­‐rate	
 traffic	

H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 30	
April	
 9th,	
 2015	

0.001Mpps	
 loss	

(need	
 inves/ga/on…)	

RevisiPng	
 the	
 Overhead	
 of	
 Interrupts	

for	
 Faster	
 Packet	
 Processing	
 &	
 I/O	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 31	

pushq %rax
pushq %rbx
pushq %rcx
pushq %rdx
pushq %rdi
pushq %rsi
pushq %rbp
pushq %r8
pushq %r9
pushq %r10
pushq %r11
pushq %r12
pushq %r13
pushq %r14
pushq %r15
call _kintr

popq %r15
popq %r14
popq %r13
popq %r12
popq %r11
popq %r10
popq %r9
popq %r8
popq %rbp
popq %rsi
popq %rdi
popq %rdx
popq %rcx
popq %rbx
popq %rax
iretq

Latency	
 Throughput	

PUSH	
 (@0F_2H)	
 1.5	
 1	

POP	
 (@0F_2H)	
 1.5	
 1	

CLI	
 (@06_2A/2D)	
 5	
 2	

Push	
 15	
 general	
 purpose	
 registers	
 onto	
 the	
 stack,	

pop	
 15	
 general	
 purpose	
 registers	
 from	
 the	
 stack,	

and	
 then	
 return	
 to	
 the	
 restore	
 point	

while	
 popping	
 the	
 original	
 stack	
 pointer	
 etc.	

Referred	
 from	
 Intel®	
 64	
 and	
 IA-­‐32	

Architectures	
 OpPmizaPon	
 Reference	
 Manual	
 	

30	
 CPU	
 cycles	
 for	
 push/pop	
 instrucPons	

è	
 10	
 ns	
 @3GHz	
 CPU	

Interim	
 Summary	

n  Faster	
 packet	
 forwarding	

p  Reduce	
 slow	
 PCIe	
 MMIO	

è	
 Key:	
 Bulk	
 processing	

u Read	

–  392.1	
 ns	
 /	
 read	

u Write	

–  72.47	
 ns	
 /	
 write	

p  Avoid	
 using	
 interrupt	
 handlers	
 for	
 40GbE/100GbE	

è	
 Key:	
 Polling,	
 Tickless	

u 10	
 ns	
 to	
 save	
 and	
 restore	
 CPU’s	
 registers	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 32	

VFSR:	
 Very	
 Fast	
 Soaware	
 Router	

n  EssenPal	
 Components	

1.  Fast	
 packet	
 forwarding	

u High-­‐rate	
 per	
 core/port	
 for	
 in-­‐order	
 processing	

2.  Fast	
 IP	
 rouPng	
 table	
 lookup	

u #	
 of	
 routes:	
 >512k	
 (envisioning	
 >800k)	

u High-­‐rate	
 per	
 core	
 for	
 in-­‐order	
 processing	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 33	

Poptrie:	
 A	
 Compressed	
 Trie	
 with	
 PopulaPon	
 Count	

for	
 Fast	
 and	
 Scalable	
 Soaware	
 IP	
 RouPng	
 Table	
 Lookup	

Hirochika	
 Asai	
 (Univ.	
 of	
 Tokyo)	

Yasuhiro	
 Ohara	
 (NTT	
 CommunicaPons)	

Fundamental	
 Algorithm	

for	
 Longest	
 Prefix	
 Match	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 35	

0	

1	
0	

1	

0	

0.0.0.0/0	

128.0.0.0/1	

0.0.0.0/2	
 64.0.0.0/2	

64.0.0.0/3	

Binary	
 Radix	
 Tree	

Problem	
 with	
 binary	
 radix	
 tree	

•  Depth	
 up	
 to	
 32	
 (for	
 IPv4)	

•  Too	
 many	
 pointers	

è	
 Slow	

Principle	
 Ideas	
 towards	
 Faster	
 IP	

RouPng	
 Table	
 Lookup	
 Algorithm	

n  Reduce	
 the	
 number	
 of	
 instrucPon,	

especially	
 memory	
 access	

p  1	
 or	
 a	
 few	
 cycles	
 for	
 most	
 of	
 bitwise	
 instrucPons	

p  Memory	
 access	
 latency	
 (in	
 Intel	
 Core	
 i7-­‐4770K)	

u  L1	
 cache:	
 4-­‐5	
 cycles	

u  L2	
 cache:	
 12	
 cycles	

u  L3	
 cache:	
 27.85	
 cycles	

u DRAM:	
 ~65	
 ns	

n  Reduce	
 memory	
 footprint	

p  Maximize	
 CPU	
 cache	
 efficiency	

u  L1/L2/L3	
 cache	
 size	
 in	
 Intel	
 Core	
 i7-­‐4770K	

–  64	
 KiB,	
 256	
 KiB,	
 8	
 MiB	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 36	

Reduce	
 the	
 number	
 of	
 instrucPons:	

StarPng	
 from	
 2^k-­‐ary	
 radix	
 tree	

x
x
x
x
x
x
:
:

00b
01b
10b
11b

Key IP Address
MSB

0 1 2 3

leaf

: child node is an internal node
: child node is a leaf node

value

chunk
(k=2)

Internal node
(descendant array)

Figure 1: The 2k-ary radix tree (k = 2).

gregation”, is not our contribution, and is applicable to other
lookup technologies as well. Unless otherwise noted, the
performance results shown in this paper are with the route
aggregation option.

Poptrie is extended from the multiway trie (i.e., M -way
or M -ary where M = 2k). The 2k-ary radix tree where
k = 2 is illustrated in Figure 1. Each node holds 2k ele-
ments in the descendant array, corresponding to the value of
the k-bit chunk in the key IP address. An element in the de-
scendant array points to its next-level child internal node or
a leaf node holding an index to the corresponding FIB entry.
Although we selected k = 6 for our implementation to fit the
size of registers of the 64-bit CPU architecture, we illustrate
the k = 2 case in this section for the brevity. The admirable
performance of Poptrie is due to the small memory footprint
so that it can be contained completely within the CPU cache,
and yet it leverages the effective multiway branching to re-
duce the total number of steps that is necessary to search
down the tree.

We describe the options in Poptrie step by step; the basic
mechanism in Section 3.1, the lookup algorithm in the basic
mechanism in Section 3.2, the leafvec extension to compress
the size of leaf nodes in Section 3.3, and the additional op-
tions of direct pointing in Section 3.4. The internal node
in the basic poptrie contains vector, base0, and base1, and
which are 8 bytes, 4 bytes, and 4 bytes, respectively. Hence
the total size of an internal node is only 16 bytes. When we
use the leafvec extension, we will add 8 bytes of leafvec in
the internal node, so the size of an internal node is then 24
bytes. Usually, we will use all the extensions and options in
the later evaluation, unless otherwise noted explicitly. In the
implementation, the contiguous arrays of internal and leaf
nodes are managed by a fast memory allocator [14] known
as the buddy memory allocator.

3.1 Basic Mechanism
First, the descendant array in the multiway trie is changed

to be a bitwise array (i.e., a bit vector) in Poptrie. The vec-
tor and the base1 collectively serve as the descendant array.
The vector is a bit-vector index of the length 2k bits, for the
current k-bit address chunk. The n-th bit in the vector corre-
sponds to the child node with the value n in the current k-bit

31270 0 1 0 2498

vector base0 base1

child nodeN

L[3127] L[3128] L[3129]
7 7 7

internal node

L
N[2498]

Figure 2: The vector in the internal node is con-
figured so that the bit-1 indicates a descendant
node, and the bit-0 indicates a leaf node.

address chunk. Each bit in the vector indicates the type of
the corresponding child node: the bit is set to 1 if the cor-
responding child is an internal node, and it is set to 0 if the
corresponding child is a leaf node. In other words, the vector
indicates the existence of the corresponding descendant in-
ternal node, and then if there is no descendant internal node,
the search will always result in a leaf node in the very level
of the tree.

The necessary descendant internal or leaf nodes are placed
so that they form a contiguous array. The array starts with
the descendant node which corresponds to n = 0, in the
ascending order up to n = 63 when k = 6. However, unnec-
essary nodes are skipped; if the node corresponds to n = 0
is not necessary, the array can start with n = 1, with corre-
sponding bits in vector properly set. This way, unnecessary
descendant nodes which do not have branches or leaf infor-
mation are omitted, allowing compact data structure size and
efficient use of memory.

The next node in the search within the tree can be ob-
tained as follows: Since the value n of the current k-bit ad-
dress chunk corresponds to the n-th bit in the vector, the
number of 1s in the least significant n + 1 bits of the vector
can be used as the index of the next node within the current
internal node’s descendant array. Here, we can utilize the
popcnt CPU instruction to accelerate the calculation of the
next node in the search procedure, as described later in Sec-
tion 3.2. Since vector bit-vector only provides the indirect
address (i.e., index) within the current descendant array, it
is necessary to provide the starting point of the descendant
array. The base1 is the base index to the consecutive sub-
sequence of the internal nodes that are the children of this
node. Similarly, the indirect index of the leaf node is ob-
tained by counting the 0 in the vector. The starting offset for
the leaf node is contained in base0. Figure 2 illustrates an
example of the indirect index of internal and leaf nodes with
vector, base1, and base0.

3.2 Lookup Algorithm
The lookup algorithm steps down the tree according to the

specified IP address like the normal 2k-ary radix tree to find
the leaf node. At the depth of d, the d-th chunk of the ad-

3

To	
 reduce	
 the	
 depth	
 of	
 the	
 tree	
 (i.e.,	
 #	
 of	
 memory	
 access)	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 37	

Reduce	
 memory	
 footprint:	
 Pointer	

Compression	
 w/	
 PopulaPon	
 Count	

x
x
x
x
x
x
:
:

00b
01b
10b
11b

Key IP Address
MSB

0 1 2 3

leaf

: child node is an internal node
: child node is a leaf node

value

chunk
(k=2)

Internal node
(descendant array)

Figure 1: The 2k-ary radix tree (k = 2).

gregation”, is not our contribution, and is applicable to other
lookup technologies as well. Unless otherwise noted, the
performance results shown in this paper are with the route
aggregation option.

Poptrie is extended from the multiway trie (i.e., M -way
or M -ary where M = 2k). The 2k-ary radix tree where
k = 2 is illustrated in Figure 1. Each node holds 2k ele-
ments in the descendant array, corresponding to the value of
the k-bit chunk in the key IP address. An element in the de-
scendant array points to its next-level child internal node or
a leaf node holding an index to the corresponding FIB entry.
Although we selected k = 6 for our implementation to fit the
size of registers of the 64-bit CPU architecture, we illustrate
the k = 2 case in this section for the brevity. The admirable
performance of Poptrie is due to the small memory footprint
so that it can be contained completely within the CPU cache,
and yet it leverages the effective multiway branching to re-
duce the total number of steps that is necessary to search
down the tree.

We describe the options in Poptrie step by step; the basic
mechanism in Section 3.1, the lookup algorithm in the basic
mechanism in Section 3.2, the leafvec extension to compress
the size of leaf nodes in Section 3.3, and the additional op-
tions of direct pointing in Section 3.4. The internal node
in the basic poptrie contains vector, base0, and base1, and
which are 8 bytes, 4 bytes, and 4 bytes, respectively. Hence
the total size of an internal node is only 16 bytes. When we
use the leafvec extension, we will add 8 bytes of leafvec in
the internal node, so the size of an internal node is then 24
bytes. Usually, we will use all the extensions and options in
the later evaluation, unless otherwise noted explicitly. In the
implementation, the contiguous arrays of internal and leaf
nodes are managed by a fast memory allocator [14] known
as the buddy memory allocator.

3.1 Basic Mechanism
First, the descendant array in the multiway trie is changed

to be a bitwise array (i.e., a bit vector) in Poptrie. The vec-
tor and the base1 collectively serve as the descendant array.
The vector is a bit-vector index of the length 2k bits, for the
current k-bit address chunk. The n-th bit in the vector corre-
sponds to the child node with the value n in the current k-bit

31270 0 1 0 2498

vector base0 base1

child nodeN

L[3127] L[3128] L[3129]
7 7 7

internal node

L
N[2498]

Figure 2: The vector in the internal node is con-
figured so that the bit-1 indicates a descendant
node, and the bit-0 indicates a leaf node.

address chunk. Each bit in the vector indicates the type of
the corresponding child node: the bit is set to 1 if the cor-
responding child is an internal node, and it is set to 0 if the
corresponding child is a leaf node. In other words, the vector
indicates the existence of the corresponding descendant in-
ternal node, and then if there is no descendant internal node,
the search will always result in a leaf node in the very level
of the tree.

The necessary descendant internal or leaf nodes are placed
so that they form a contiguous array. The array starts with
the descendant node which corresponds to n = 0, in the
ascending order up to n = 63 when k = 6. However, unnec-
essary nodes are skipped; if the node corresponds to n = 0
is not necessary, the array can start with n = 1, with corre-
sponding bits in vector properly set. This way, unnecessary
descendant nodes which do not have branches or leaf infor-
mation are omitted, allowing compact data structure size and
efficient use of memory.

The next node in the search within the tree can be ob-
tained as follows: Since the value n of the current k-bit ad-
dress chunk corresponds to the n-th bit in the vector, the
number of 1s in the least significant n + 1 bits of the vector
can be used as the index of the next node within the current
internal node’s descendant array. Here, we can utilize the
popcnt CPU instruction to accelerate the calculation of the
next node in the search procedure, as described later in Sec-
tion 3.2. Since vector bit-vector only provides the indirect
address (i.e., index) within the current descendant array, it
is necessary to provide the starting point of the descendant
array. The base1 is the base index to the consecutive sub-
sequence of the internal nodes that are the children of this
node. Similarly, the indirect index of the leaf node is ob-
tained by counting the 0 in the vector. The starting offset for
the leaf node is contained in base0. Figure 2 illustrates an
example of the indirect index of internal and leaf nodes with
vector, base1, and base0.

3.2 Lookup Algorithm
The lookup algorithm steps down the tree according to the

specified IP address like the normal 2k-ary radix tree to find
the leaf node. At the depth of d, the d-th chunk of the ad-

3

x
x
x
x
x
x
:
:

00b
01b
10b
11b

Key IP Address
MSB

0 1 2 3

leaf

: child node is an internal node
: child node is a leaf node

value

chunk
(k=2)

Internal node
(descendant array)

Figure 1: The 2k-ary radix tree (k = 2).

gregation”, is not our contribution, and is applicable to other
lookup technologies as well. Unless otherwise noted, the
performance results shown in this paper are with the route
aggregation option.

Poptrie is extended from the multiway trie (i.e., M -way
or M -ary where M = 2k). The 2k-ary radix tree where
k = 2 is illustrated in Figure 1. Each node holds 2k ele-
ments in the descendant array, corresponding to the value of
the k-bit chunk in the key IP address. An element in the de-
scendant array points to its next-level child internal node or
a leaf node holding an index to the corresponding FIB entry.
Although we selected k = 6 for our implementation to fit the
size of registers of the 64-bit CPU architecture, we illustrate
the k = 2 case in this section for the brevity. The admirable
performance of Poptrie is due to the small memory footprint
so that it can be contained completely within the CPU cache,
and yet it leverages the effective multiway branching to re-
duce the total number of steps that is necessary to search
down the tree.

We describe the options in Poptrie step by step; the basic
mechanism in Section 3.1, the lookup algorithm in the basic
mechanism in Section 3.2, the leafvec extension to compress
the size of leaf nodes in Section 3.3, and the additional op-
tions of direct pointing in Section 3.4. The internal node
in the basic poptrie contains vector, base0, and base1, and
which are 8 bytes, 4 bytes, and 4 bytes, respectively. Hence
the total size of an internal node is only 16 bytes. When we
use the leafvec extension, we will add 8 bytes of leafvec in
the internal node, so the size of an internal node is then 24
bytes. Usually, we will use all the extensions and options in
the later evaluation, unless otherwise noted explicitly. In the
implementation, the contiguous arrays of internal and leaf
nodes are managed by a fast memory allocator [14] known
as the buddy memory allocator.

3.1 Basic Mechanism
First, the descendant array in the multiway trie is changed

to be a bitwise array (i.e., a bit vector) in Poptrie. The vec-
tor and the base1 collectively serve as the descendant array.
The vector is a bit-vector index of the length 2k bits, for the
current k-bit address chunk. The n-th bit in the vector corre-
sponds to the child node with the value n in the current k-bit

31270 0 1 0 2498

vector base0 base1

child nodeN

L[3127] L[3128] L[3129]
7 7 7

internal node

L
N[2498]

Figure 2: The vector in the internal node is con-
figured so that the bit-1 indicates a descendant
node, and the bit-0 indicates a leaf node.

address chunk. Each bit in the vector indicates the type of
the corresponding child node: the bit is set to 1 if the cor-
responding child is an internal node, and it is set to 0 if the
corresponding child is a leaf node. In other words, the vector
indicates the existence of the corresponding descendant in-
ternal node, and then if there is no descendant internal node,
the search will always result in a leaf node in the very level
of the tree.

The necessary descendant internal or leaf nodes are placed
so that they form a contiguous array. The array starts with
the descendant node which corresponds to n = 0, in the
ascending order up to n = 63 when k = 6. However, unnec-
essary nodes are skipped; if the node corresponds to n = 0
is not necessary, the array can start with n = 1, with corre-
sponding bits in vector properly set. This way, unnecessary
descendant nodes which do not have branches or leaf infor-
mation are omitted, allowing compact data structure size and
efficient use of memory.

The next node in the search within the tree can be ob-
tained as follows: Since the value n of the current k-bit ad-
dress chunk corresponds to the n-th bit in the vector, the
number of 1s in the least significant n + 1 bits of the vector
can be used as the index of the next node within the current
internal node’s descendant array. Here, we can utilize the
popcnt CPU instruction to accelerate the calculation of the
next node in the search procedure, as described later in Sec-
tion 3.2. Since vector bit-vector only provides the indirect
address (i.e., index) within the current descendant array, it
is necessary to provide the starting point of the descendant
array. The base1 is the base index to the consecutive sub-
sequence of the internal nodes that are the children of this
node. Similarly, the indirect index of the leaf node is ob-
tained by counting the 0 in the vector. The starting offset for
the leaf node is contained in base0. Figure 2 illustrates an
example of the indirect index of internal and leaf nodes with
vector, base1, and base0.

3.2 Lookup Algorithm
The lookup algorithm steps down the tree according to the

specified IP address like the normal 2k-ary radix tree to find
the leaf node. At the depth of d, the d-th chunk of the ad-

3

Four	
 pointers	

Bit-­‐vector	
 +	
 two	
 pointers	

Index:	
 #	
 of	
 1’s	
 bits	
 in	
 the	

least	
 significant	
 N	
 bits	

Index:	
 #	
 of	
 0’s	
 bits	
 in	
 the	

least	
 significant	
 N	
 bits	

Which	
 k?	
 64-­‐bit	
 CPU	
 è	
 k=6	
 (so	
 that	
 vector	
 is	
 in	
 2^6	
 =	
 64	
 bits)	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 38	

Further	
 Compression:	
 Leaf	
 Vector	
 to	

Remove	
 Redundant	
 Leaf	
 Nodes	

Algorithm 1 lookup (t = (N , L), key); the lookup
procedure for the address key in the tree t (when k =
6). The function extract(key, off, len) extracts bits of
length len, starting with the offset off, from the address
key. N and L represent arrays of internal nodes and
leaves, respectively. ≪ denotes the shift instruction of
bits.
1: index = 0;
2: vector = t.N [index].vector;
3: offset = 0;
4: v = extract (key, offset, 6);
5: while (vector & (1ULL ≪ v)) do
6: base = t.N [index].base1;
7: bc = popcnt (vector & ((2ULL ≪ v) - 1));
8: index = base + bc - 1;
9: vector = t.N [index].vector;
10: offset += 6;
11: v = extract (key, offset, 6);
12: end while
13: base = t.N [index].base0;
14: bc = popcnt ((∼t.N [index].vector) & ((2ULL ≪ v) - 1));
15: return t.L[base + bc - 1];

dress is used as the index of the vector in the internal node.
Let the value of the d-th chunk in the key address be n, and
then the lookup at the depth of d is executed as follows: If
the corresponding bit is one, then the lookup algorithm con-
tinues to the next depth. The index of the next internal node
in the descendant array is computed by adding to the base1
the number of 1s in the least significant n+1 bits of the vec-
tor minus 1. If the corresponding bit is zero, then the lookup
algorithm finishes the lookup by finding a leaf node. The in-
dex of the leaf node in the leaf array is computed by adding
to the base0 the number of 0s in the least significant n + 1
bits of the vector minus 1.

The unique key point in Poptrie is the use of the instruc-
tion to count the number of 1s and 0s in a bit string. Those
counts are used as the indirect index of the descendant node
and the leaf node, respectively. The procedure of counting
the number of 1s in a bit string is called “population count”,
and an instruction executing the population count, popcnt,
has been implemented in the CPU instruction set of x86 pro-
cessors. When the popcnt CPU instruction is not available,
a fast alternative can be found in the literature [32].

The lookup algorithm is shown in Algorithm 1 where the
length of the chunk k = 6. The algorithm takes the poptrie
structure t and the IP address key as its input arguments, and
returns the content of the longest matching leaf. In t, there
are the internal node array N , and the leaf array L. In Line 1
the index is set to 0 to access the root internal node. Line 2
accesses to the vector of the root internal node. In Line 4,
we obtain the value of the first 6-bit chunk from the offset 0.
Line 5 to Line 12 are the main loop that continues as long as
there is a corresponding descendant internal node (checked
in Line 5). Line 7 gets the population count of set bits in
the least significant v + 1 bits and store it in bc. The next
node’s index is calculated (Line 8), the next node’s vector is
prepared to be checked (Line 9), and the chunk is shifted by

0 0 0 1 31270 0 1 0 2498

leafvec vector base0 base1

child nodeN

L[3127] L[3128] L[3129]
7 7 7

internal node

L

Hole punching

N[2498]

irrelevant

Figure 3: Merging identical leaf nodes with ig-
noring a hole punching using the leafvec

6 bits for the next round of the loop (Line 10, 11). Line 13
to 15 calculates the indirect index of the corresponding leaf,
and returns the content.

3.3 Compression with the Leaf Bit-Vector
The basic algorithm described in the previous subsection

yields many duplicate and redundant leaves. In the ordinary
2k-ary radix tree, an identical leaf node (i.e., the same FIB
entries) may redundantly span to multiple leaf nodes within
an internal node, up to 2k leaf nodes. Hence, the redundant
leaf nodes consume significant memory. In order to avoid
them, leafvec is introduced in the poptrie internal node. The
leafvec and base0 collectively serve as the base and the in-
direct index to locate the leaf node, which is similar to the
vector and base1 described in the previous section. The indi-
rect index with base offset using the leafvec and base0 omits
the redundant information as long as the redundant leaf slots
are contiguous. For example, if all the 64 slots in an internal
node contains the same value, it can be compressed to just
one leaf slot with only the least-significant bit in the leafvec
being 1. The indirect index for the leaf that corresponds to
the value n for the current chunk is calculated as the number
of 1s in the least-significant n + 1 bits in the leafvec. This
way, all the indirect indices for any value n fall into the first
leaf slot, making the efficient memory compression.

This mechanism also avoids the issue with so called hole-
punching, which sometimes prevent the leaves from being
contiguous, disabling the aforementioned efficient leaf com-
pression. In Poptrie, the contiguity is regained by making the
leaf slot irrelevant if there is a descendant internal node that
corresponds to the leaf slot. The lookup algorithm checks al-
ways the existence of the descendant internal node first, and
if there is one, the lookup never tracks back from the lower
level to the current level. Hence the leaf slot with a corre-
sponding descendant internal node is made irrelevant, and is
set to 0. Then, we may make the leaf slot contiguous again,
ignoring those leaf slots with corresponding descendant in-
ternal node, as shown in Figure 3.

The modification in the algorithm is shown in Algorithm 2.
Only the Line 14 is changed from Algorithm 1 so that it
checks the newly introduced leafvec field to compute the

4

One	
 of	
 the	
 problem	
 with	
 the	
 basic	
 data	
 structure	

-­‐  Redundant	
 leaf	
 nodes	
 for	
 prefixes	
 that	
 do	
 not	
 match	
 k-­‐bit	
 boundary	

-­‐  e.g.,	
 /1	
 (/7,	
 etc.	
 as	
 well)	
 may	
 create	
 32	
 redundant	
 leaf	
 nodes	
 when	
 k=6	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 39	

Visualized	
 Lookup	
 Algorithm	
 Example	
Algorithm 2 The leaf compression algorithm; the dif-
ferences from the Algorithm 1. Only Line 14 is substi-
tuted.
14: bc = popcnt (t.N [index].leafvec & ((2ULL ≪ v) - 1));

0011

#0 #1

0010 1010

#0 #0 #1 #2 #0

Internal nodes

leaf vec
(a) (b) (c)

(e)
(f)

0100 1101 0001

base1/0vector (d)

L[0] L[16] L[17] L[18] L[128]

N[0] N[8] N[9]

Figure 4: The data structure of Poptrie where
k = 2, and the lookup procedure for 0110b.

corresponding leaf index. An example of the lookup proce-
dure using leafvec is illustrated in Figure 4; an 8-bit address
01100111b is searched as follows: (a) It takes the first two
bits (01b) from the address, and then picks a bit correspond-
ing to this index (the second bit from the right). (b) It finds
the base address of the next subsequence of internal nodes
using the base1 member. (c) It counts the number of 1s in
the least significant two bits of the vector member minus
1 (= 1), and finds the next internal node. (d) It takes the
second two bits from the address (10b), and then picks a bit
corresponding to this index (the third bit from the right). The
bit is 0 in vector, so the search switches to find a leaf. (e) It
finds the base address for the corresponding leaf nodes from
base0. (f) It counts the number of 1s in the least significant
three bits of the leafvec minus 1 (= 0), and finally finds the
leaf node.

3.4 Direct Pointing
The depth (height) in Poptrie may grow as large as six in-

ternal node levels in the case of IPv4 address of length 32
bits and the 6-bits chunk length (k = 6). This depth can be
reduced if we allow some increase in memory footprint. As
we will see later in Section 4.1, most prefixes in the realis-
tic datasets are distributed in the range of prefix length from
/11 through /24. This means that the lookup algorithm of
Poptrie needs to traverse at least two internal nodes from its
root to reach a leaf node for most IP addresses. Hence, it
is common to conduct an optimization technique such that
the most significant s bits are just extracted to an array of
length 2s elements that points to the corresponding descen-
dant node or directly to the leaf node. Examples can be seen
in DIR-24-8-BASIC, DXR and SAIL.

With the s variable specifying how many of the most sig-
nificant bits should be used as the direct index. It enables us
to jump directly to the corresponding leaf or internal node,
by accessing the n-th elements in the top-level array, where
n is the value of the most significant s-bits in the given key.
The direct pointing increases the memory footprint by 4×2s

{
{
{

6bits

6bits

6bits

poptrie (s=0)

}root
internal node

FIB table

(a) Without Direct Pointing.

poptrie (s=12)

top-level array

Direct pointing

FIB table

(b) Direct Pointing.

Figure 5: Direct pointing (k = 6, s = 12).

Algorithm 3 The direct pointing algorithm; the differ-
ences from Algorithm 1. Line 1 and 2 in Algorithm 1
are replaced with the statements below.
1: index = extract (key, 0, t.s);
2: dindex = t.D[index].direct index;
3: if (dindex & (1UL ≪ 31)) then
4: return t.L[dindex & ((1UL ≪ 31) - 1)];
5: end if
6: index = dindex;
7: offset = t.s;

bytes at maximum in our implementation where the size of
each element in the top-level array is 4 bytes.

The modifications to Algorithm 1 are shown in
Algorithm 3. The value of the element in the top-level array
is called “direct index”. If the most significant bit is set in
the direct index, the remaining bits in the direct index point
to the leaf node directly. Otherwise, the direct index points
to the internal node and further search is necessary.

3.5 Incremental Update
Although compilation time of Poptrie from scratch, i.e.,

rebuilding the data structure entirely from the RIB, is short
(less than 70 milliseconds as shown later in Table 2), it is
generally desired to have a way to quickly update the FIB in-
crementally. The incremental update of Poptrie is performed
by replacing only the updated part of the trie.

Blocking the read access to Poptrie using write lock is
not acceptable because it blocks IP forwarding process for a
considerable amount of time. Hence, we opt for a lock-free
approach for the incremental update in Poptrie. In either
way, the data structure must be kept consistent all the time.
The strategy here is to let the IP forwarding process keep re-
ferring to the current (i.e., older) FIB while the construction
of the updated FIB is ongoing. When the update is finished,
the current FIB is switched to the new one, by changing the
pointer or the index of the FIB using an atomic instruction.
Since the FIB lookup is read-only procedure and we assume
the single-threaded update operation, the atomic instruction
can ensure the consistency. The simplicity of Poptrie en-
ables this approach on the various part and level of the data
structure.

5

For	
 the	
 desPnaPon	
 address	
 0110b	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 40	

Direct	
 PoinPng	

Algorithm 2 The leaf compression algorithm; the dif-
ferences from the Algorithm 1. Only Line 14 is substi-
tuted.
14: bc = popcnt (t.N [index].leafvec & ((2ULL ≪ v) - 1));

0011

#0 #1

0010 1010

#0 #0 #1 #2 #0

Internal nodes

leaf vec
(a) (b) (c)

(e)
(f)

0100 1101 0001

base1/0vector (d)

L[0] L[16] L[17] L[18] L[128]

N[0] N[8] N[9]

Figure 4: The data structure of Poptrie where
k = 2, and the lookup procedure for 0110b.

corresponding leaf index. An example of the lookup proce-
dure using leafvec is illustrated in Figure 4; an 8-bit address
01100111b is searched as follows: (a) It takes the first two
bits (01b) from the address, and then picks a bit correspond-
ing to this index (the second bit from the right). (b) It finds
the base address of the next subsequence of internal nodes
using the base1 member. (c) It counts the number of 1s in
the least significant two bits of the vector member minus
1 (= 1), and finds the next internal node. (d) It takes the
second two bits from the address (10b), and then picks a bit
corresponding to this index (the third bit from the right). The
bit is 0 in vector, so the search switches to find a leaf. (e) It
finds the base address for the corresponding leaf nodes from
base0. (f) It counts the number of 1s in the least significant
three bits of the leafvec minus 1 (= 0), and finally finds the
leaf node.

3.4 Direct Pointing
The depth (height) in Poptrie may grow as large as six in-

ternal node levels in the case of IPv4 address of length 32
bits and the 6-bits chunk length (k = 6). This depth can be
reduced if we allow some increase in memory footprint. As
we will see later in Section 4.1, most prefixes in the realis-
tic datasets are distributed in the range of prefix length from
/11 through /24. This means that the lookup algorithm of
Poptrie needs to traverse at least two internal nodes from its
root to reach a leaf node for most IP addresses. Hence, it
is common to conduct an optimization technique such that
the most significant s bits are just extracted to an array of
length 2s elements that points to the corresponding descen-
dant node or directly to the leaf node. Examples can be seen
in DIR-24-8-BASIC, DXR and SAIL.

With the s variable specifying how many of the most sig-
nificant bits should be used as the direct index. It enables us
to jump directly to the corresponding leaf or internal node,
by accessing the n-th elements in the top-level array, where
n is the value of the most significant s-bits in the given key.
The direct pointing increases the memory footprint by 4×2s

{
{
{

6bits

6bits

6bits

poptrie (s=0)

}root
internal node

FIB table

(a) Without Direct Pointing.

poptrie (s=12)

top-level array

Direct pointing

FIB table

(b) Direct Pointing.

Figure 5: Direct pointing (k = 6, s = 12).

Algorithm 3 The direct pointing algorithm; the differ-
ences from Algorithm 1. Line 1 and 2 in Algorithm 1
are replaced with the statements below.
1: index = extract (key, 0, t.s);
2: dindex = t.D[index].direct index;
3: if (dindex & (1UL ≪ 31)) then
4: return t.L[dindex & ((1UL ≪ 31) - 1)];
5: end if
6: index = dindex;
7: offset = t.s;

bytes at maximum in our implementation where the size of
each element in the top-level array is 4 bytes.

The modifications to Algorithm 1 are shown in
Algorithm 3. The value of the element in the top-level array
is called “direct index”. If the most significant bit is set in
the direct index, the remaining bits in the direct index point
to the leaf node directly. Otherwise, the direct index points
to the internal node and further search is necessary.

3.5 Incremental Update
Although compilation time of Poptrie from scratch, i.e.,

rebuilding the data structure entirely from the RIB, is short
(less than 70 milliseconds as shown later in Table 2), it is
generally desired to have a way to quickly update the FIB in-
crementally. The incremental update of Poptrie is performed
by replacing only the updated part of the trie.

Blocking the read access to Poptrie using write lock is
not acceptable because it blocks IP forwarding process for a
considerable amount of time. Hence, we opt for a lock-free
approach for the incremental update in Poptrie. In either
way, the data structure must be kept consistent all the time.
The strategy here is to let the IP forwarding process keep re-
ferring to the current (i.e., older) FIB while the construction
of the updated FIB is ongoing. When the update is finished,
the current FIB is switched to the new one, by changing the
pointer or the index of the FIB using an atomic instruction.
Since the FIB lookup is read-only procedure and we assume
the single-threaded update operation, the atomic instruction
can ensure the consistency. The simplicity of Poptrie en-
ables this approach on the various part and level of the data
structure.

5

Lookup	
 s	
 bits	
 at	
 the	
 first	
 stage	
 (like	
 other	
 algorithms)	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 41	

EvaluaPon	
 for	
 Random	
 Traffic	

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 1 2 3 4

Lo
ok

up
 ra

te
 [M

lp
s]

of threads

REAL-Tier1-A
REAL-Tier1-B

REAL-­‐Tier1-­‐A:	
 Global	
 Tier-­‐1’s	
 BGP	
 Router	

REAL-­‐Tier1-­‐B:	
 DomesPc	
 ISP’s	
 BGP	
 Router	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 42	

Performance	
 EvaluaPon	
 for	
 Real	

Traffic	
 (WIDE	
 Transit)	

 0

 50

 100

 150

 200

 250

 300

SAIL D16R Poptrie16 D18R Poptrie18

Lo
ok

up
 ra

te
 [M

lp
s]

Data Structure and Algorithm

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 43	

Detailed	
 Analysis	
 on	
 CPU	
 Cycles	

per	
 Lookup	
 for	
 Random	
 Traffic	

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
PU

 c
yc

le
s

pe
r l

oo
ku

p

Binary radix depth

D16R

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
PU

 c
yc

le
s

pe
r l

oo
ku

p

Binary radix depth

D18R

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
PU

 c
yc

le
s

pe
r l

oo
ku

p

Binary radix depth

Poptrie16

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
PU

 c
yc

le
s

pe
r l

oo
ku

p

Binary radix depth

Poptrie18

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
PU

 c
yc

le
s

pe
r l

oo
ku

p

Binary radix depth

SAIL

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 44	

Structural	
 Scalability	

 0

 50

 100

 150

 200

 250

 300

SAIL D16R Poptrie16 D18R Poptrie18

Lo
ok

up
 ra

te
 [M

lp
s]

Data Structure and Algorithm

Figure 12: The average lookup rate for real-trace
on REAL-RENET.

ior should diverge, since the second stage of each algorithm
is different while the first stage is similar in SAIL, DXR, and
Poptrie. Hence, we investigate each case per binary radix
depth. Figure 11 shows the CPU cycle distribution for each
binary radix depth. The wick of each candlestick represents
5th/95th percentile, the body represents the first and third
quartile values, and the internal bar represents the median
value. This figure demonstrates a significant difference at
greater binary radix depth; for example, the 95th percentiles
of Poptrie18 are no more than 172 cycles for any binary radix
depth while those of SAIL and DXR exceed 234 cycles at
the binary radix depth of 24 and 25. Overall, Poptrie suc-
ceeded in maintaining the lower number of CPU cycles in
various cases, gaining superior performance. We found the
similar trend also for the dataset REAL-Tier1-B. When the
binary radix depth is smaller than 16, all algorithms kept the
CPU cycles consistently small, less than 50. Interestingly,
the median of D16R is larger than that of the others. As
shown in Figure 10 before, we also see the small difference
in the distributions between D16R and Poptrie16 around 22
cycles. We suspect that this can be attributed to the DXR’s
behavior; the binary search for its range table accesses mem-
ory many times so that the data structure for smaller binary
radix depth are hard to keep in the L2 cache.

4.7 Performance Evaluation with a Real In-
ternet Traffic Trace

Figure 12 shows the average lookup rate for real-trace
on REAL-RENET. Poptrie18 is 1.61 and 1.22 times faster
than D18R and SAIL, respectively. Additionally, we also
confirm that Poptrie18 outperforms both DXR (D16R and
D18R) and SAIL for real-trace on all the other RIB
datasets although real-trace should be a different pattern
from the real traffic on the other RIB datasets.

The lookup rates of Poptrie and DXR for real-trace are
degraded compared to those for random. This is because
a larger number of packets goes to IGP routes that are gen-
erally more specific than BGP routes in real-trace. 32.5%
of the packets in real-trace on REAL-RENET have the

Table 5: The lookup rates of each algorithm in
Mlps for random traffic on synthetic large RIBs.

Algorithm SYN1 SYN1 SYN2 SYN2
-Tier1-A -Tier1-B -Tier1-A -Tier1-B

SAIL 102.86 99.98 N/A N/A
D18R (modified) 115.45 117.48 102.59 104.22
Poptrie18 188.02 187.69 174.42 175.04

binary radix depth more than 18, while for the whole IPv4
address space only 22.1% have the binary radix depth more
than 18. These addresses cannot be looked up in the first
stage of the algorithm of poptrie18 and D18R. Moreover,
21.8% of the packets of real-trace have binary radix depth
more than 24, while only 1.66% of the whole IPv4 address
space have binary radix depth more than 24.

SAIL performs better in the lookup rate for real-trace
than for random. This is because SAIL could take advan-
tage of the CPU cache due to the locality of the destination
IP addresses, i.e., the sequences of packets with the identical
destination IP address.

4.8 Scalability
We measure the performance on the synthetic RIBs (i.e.,

those with ’SYN’ prefix) to evaluate the scalability to future
routing table growth. SAIL cannot compile SYN2-Tier1-A
and SYN2-Tier1-B due to its structural limitation; C16[i] in
SAIL is encoded in the 15 bits of BCN [i], but it exceeds
215 for these datasets. The DXR also exceeds its structural
limitation of the number of ranges that is supported up to
219. However, we can extend it to 220 by absorbing one
bit for the “short” format flag to the address range index.
Thus, we modified DXR and conducted the evaluation. The
structural scalability of Poptrie is discussed in Section 5.

The average lookup rates of each algorithm for the ran-
dom traffic pattern on the synthetic RIBs are summarized
in Table 5. Poptrie18 outperforms SAIL and D18R, and
the lookup rate of Poptrie18 exceeds the 100 GbE wire-rate,
148.8 Mlps, for these RIBs, while DXR slows down to
102.59 Mlps for SYN2-Tier1-A. Thus, Poptrie is scalable
to the routing table growth in lookup performance.

4.9 Update Performance
We also evaluate the performance of updating the

Poptrie18 data structure. The update is first performed to the
radix tree for the RIB maintenance, and then replaces a part
of the trie in Poptrie, as described in Section 3.5. We use four
15 minute update archive files (i.e., an hour in total) of RV-
linx-p52 to evaluate the update performance. This dataset
contains 23,446 route updates (18,141 announced and 5,305
withdrawn) in 7,824 messages.

The average number of replacements for the top-level ar-
ray in direct pointing, the leaf node, and the internal node,

11

Table 1: RIB Datasets; the name, number of prefixes, and number of distinct next hops.
Name # of # of Name # of # of Name # of # of

prefixes nhops prefixes nhops prefixes nhops

RV-linx-p46 † 518,231 308 RV-saopaulo-p12 ‡ 516,536 510 RV-singapore-p3 † 518,620 136
RV-linx-p50 † 512,476 410 RV-saopaulo-p13 ‡ 517,914 504 RV-singapore-p5 † 516,557 129
RV-linx-p52 † 514,590 419 RV-saopaulo-p16 † 521,405 528 RV-sydney-p0 † 520,580 122
RV-linx-p57 † 514,070 142 RV-saopaulo-p18 ‡ 521,874 522 RV-sydney-p1 † 515,809 125
RV-linx-p60 † 508,700 70 RV-saopaulo-p2 ‡ 523,092 530 RV-sydney-p3 † 517,511 115
RV-linx-p61 † 512,476 149 RV-saopaulo-p20 ‡ 523,574 470 RV-sydney-p4 † 519,246 86
RV-nwax-p1 † 519,224 60 RV-saopaulo-p23 ‡ 523,013 517 RV-sydney-p9 † 523,400 127
RV-nwax-p2 † 514,627 46 RV-saopaulo-p25 ‡ 532,637 523 RV-telxatl-p3 ‡ 511,161 56
RV-nwax-p5 † 519,195 49 RV-saopaulo-p26 ‡ 516,408 479 RV-telxatl-p6 ‡ 519,537 42
RV-paixisc-p12 † 519,142 68 RV-saopaulo-p8 ‡ 522,296 477 RV-telxatl-p7 ‡ 513,339 49
RV-paixisc-p14 † 524,168 49 RV-saopaulo-p9 ‡ 515,639 507
REAL-Tier1-A ∗ 531,489 13 SYN1-Tier1-A 764,847 45 SYN2-Tier1-A 885,645 87
REAL-Tier1-B ∗ 524,170 9 SYN1-Tier1-B 756,406 19 SYN2-Tier1-B 876,944 33
REAL-RENET ⋄ 516,100 32

† Snapshot of 2014-12-17 00:00 UTC, ‡ Snapshot of 2014-12-16 23:00 UTC, ∗ Obtained on Jan. 9, 2015, ⋄ Obtained on Jan. 3, 2015.

 0 4 8 12 16 20 24 28 32
Prefix length

 4
 8

 12
 16
 20
 24
 28
 32

Bi
na

ry
 ra

di
x

de
pt

h

100
101
102
103
104
105
106
107
108
109

Figure 7: The heat map of the binary radix
depth for all 232 IPv4 addresses on REAL-Tier1-
A. x-axis is the matched prefix’s prefix length.
y-axis is the length of checked bits.

to the next hop assignment policies.
It is worth noting that in general, the number of bits

checked in the longest prefix matching is larger than the
prefix length of individual routes. This is due to the other
longer prefixes that are neighboring to the prefix in the ad-
dress space. We call the number of bits (equivalently, the
depth to search in the binary radix tree) that is necessary to
decide the resulting longest matching prefix “binary radix
depth”. The binary radix depth is possibly deeper than the
prefix length as shown in Figure 7. We see a number of cases
where deeper search is required to decide the shorter longest
matching prefix. For example, there are many cases where it
is necessary to search down to the 24th level to decide that
the matching prefix is only /8. This influences the perfor-
mance of lookup technologies shown in the later sections.

4.2 Traffic Patterns
We take the following traffic patterns into consideration

for the lookup performance evaluation: random, sequen-

tial, repeated, and real-trace. The first three are syn-
thetic ones, and the last one is real traffic.

For random traffic pattern, 232 random IP addresses are
generated using xorshift [19]. Each random number is gen-
erated just before the lookup routine to minimize the cache
pollution, rather than preparing an array of random num-
bers in advance like other studies do. The measured av-
erage overhead of the random number generator was 1.22
nanoseconds per generation. Note that we did not exclude
this overhead from the results. For sequential, 232 ad-
dresses from 0.0.0.0 to 255.255.255.255 are queried se-
quentially. Technologies tend to show better performance
for sequential because of the absence of random number
generation, and the higher possibility of cache hit in search-
ing down the same part of the tree. Repeated is similar
to random except that each random number address is re-
peated 16 times (total 16 × 232 lookups).

Real-trace is a real Internet traffic trace, captured on
December 16, 2014 in a research and educational network
for 15 minutes. The trace was captured on a transit link of
the same AS border router that produced the REAL-RENET
dataset. We excluded an IP address that probes the entire
IPv4 address space with a large amount of experimental
ICMP packets4. The packets accounted for 24.4% of the to-
tal IPv4 packets in the trace. The number of IPv4 packets in
this trace (after the filtering) is 97,126,495 with 644,790 dis-
tinct destination IPv4 addresses. In the evaluation, we load
all the destination IP addresses of real-trace into an array
in memory in advance, and issue the lookup queries one by
one in sequence.

4.3 Effect of Extensions in Poptrie
We first evaluate the effectiveness of the extensions and

the design options of Poptrie. They are labeled “basic” (Sec-
tion 3.1), “leafvec” (Section 3.3), and “s” (the parameter
for direct pointing, described in Section 3.4). Using REAL-
Tier1-A, we measured the number of internal nodes (labeled

4USC ANT project: http://www.isi.edu/ant/address/

7

Table 1: RIB Datasets; the name, number of prefixes, and number of distinct next hops.
Name # of # of Name # of # of Name # of # of

prefixes nhops prefixes nhops prefixes nhops

RV-linx-p46 † 518,231 308 RV-saopaulo-p12 ‡ 516,536 510 RV-singapore-p3 † 518,620 136
RV-linx-p50 † 512,476 410 RV-saopaulo-p13 ‡ 517,914 504 RV-singapore-p5 † 516,557 129
RV-linx-p52 † 514,590 419 RV-saopaulo-p16 † 521,405 528 RV-sydney-p0 † 520,580 122
RV-linx-p57 † 514,070 142 RV-saopaulo-p18 ‡ 521,874 522 RV-sydney-p1 † 515,809 125
RV-linx-p60 † 508,700 70 RV-saopaulo-p2 ‡ 523,092 530 RV-sydney-p3 † 517,511 115
RV-linx-p61 † 512,476 149 RV-saopaulo-p20 ‡ 523,574 470 RV-sydney-p4 † 519,246 86
RV-nwax-p1 † 519,224 60 RV-saopaulo-p23 ‡ 523,013 517 RV-sydney-p9 † 523,400 127
RV-nwax-p2 † 514,627 46 RV-saopaulo-p25 ‡ 532,637 523 RV-telxatl-p3 ‡ 511,161 56
RV-nwax-p5 † 519,195 49 RV-saopaulo-p26 ‡ 516,408 479 RV-telxatl-p6 ‡ 519,537 42
RV-paixisc-p12 † 519,142 68 RV-saopaulo-p8 ‡ 522,296 477 RV-telxatl-p7 ‡ 513,339 49
RV-paixisc-p14 † 524,168 49 RV-saopaulo-p9 ‡ 515,639 507
REAL-Tier1-A ∗ 531,489 13 SYN1-Tier1-A 764,847 45 SYN2-Tier1-A 885,645 87
REAL-Tier1-B ∗ 524,170 9 SYN1-Tier1-B 756,406 19 SYN2-Tier1-B 876,944 33
REAL-RENET ⋄ 516,100 32

† Snapshot of 2014-12-17 00:00 UTC, ‡ Snapshot of 2014-12-16 23:00 UTC, ∗ Obtained on Jan. 9, 2015, ⋄ Obtained on Jan. 3, 2015.

 0 4 8 12 16 20 24 28 32
Prefix length

 4
 8

 12
 16
 20
 24
 28
 32

Bi
na

ry
 ra

di
x

de
pt

h

100
101
102
103
104
105
106
107
108
109

Figure 7: The heat map of the binary radix
depth for all 232 IPv4 addresses on REAL-Tier1-
A. x-axis is the matched prefix’s prefix length.
y-axis is the length of checked bits.

to the next hop assignment policies.
It is worth noting that in general, the number of bits

checked in the longest prefix matching is larger than the
prefix length of individual routes. This is due to the other
longer prefixes that are neighboring to the prefix in the ad-
dress space. We call the number of bits (equivalently, the
depth to search in the binary radix tree) that is necessary to
decide the resulting longest matching prefix “binary radix
depth”. The binary radix depth is possibly deeper than the
prefix length as shown in Figure 7. We see a number of cases
where deeper search is required to decide the shorter longest
matching prefix. For example, there are many cases where it
is necessary to search down to the 24th level to decide that
the matching prefix is only /8. This influences the perfor-
mance of lookup technologies shown in the later sections.

4.2 Traffic Patterns
We take the following traffic patterns into consideration

for the lookup performance evaluation: random, sequen-

tial, repeated, and real-trace. The first three are syn-
thetic ones, and the last one is real traffic.

For random traffic pattern, 232 random IP addresses are
generated using xorshift [19]. Each random number is gen-
erated just before the lookup routine to minimize the cache
pollution, rather than preparing an array of random num-
bers in advance like other studies do. The measured av-
erage overhead of the random number generator was 1.22
nanoseconds per generation. Note that we did not exclude
this overhead from the results. For sequential, 232 ad-
dresses from 0.0.0.0 to 255.255.255.255 are queried se-
quentially. Technologies tend to show better performance
for sequential because of the absence of random number
generation, and the higher possibility of cache hit in search-
ing down the same part of the tree. Repeated is similar
to random except that each random number address is re-
peated 16 times (total 16 × 232 lookups).

Real-trace is a real Internet traffic trace, captured on
December 16, 2014 in a research and educational network
for 15 minutes. The trace was captured on a transit link of
the same AS border router that produced the REAL-RENET
dataset. We excluded an IP address that probes the entire
IPv4 address space with a large amount of experimental
ICMP packets4. The packets accounted for 24.4% of the to-
tal IPv4 packets in the trace. The number of IPv4 packets in
this trace (after the filtering) is 97,126,495 with 644,790 dis-
tinct destination IPv4 addresses. In the evaluation, we load
all the destination IP addresses of real-trace into an array
in memory in advance, and issue the lookup queries one by
one in sequence.

4.3 Effect of Extensions in Poptrie
We first evaluate the effectiveness of the extensions and

the design options of Poptrie. They are labeled “basic” (Sec-
tion 3.1), “leafvec” (Section 3.3), and “s” (the parameter
for direct pointing, described in Section 3.4). Using REAL-
Tier1-A, we measured the number of internal nodes (labeled

4USC ANT project: http://www.isi.edu/ant/address/

7

RIB	
 dataset	
 (synthe/c	
 RIB	
 dataset)	

Lookup	
 performance	
 for	
 random	
 traffic	
 [Mlps]	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 45	

Interim	
 Summary	

n  Fast	
 IP	
 rouPng	
 table	
 lookup	

p  914	
 Mlps	
 w/	
 4	
 core	

u Global	
 Per-­‐1	
 ISP’s	
 full	
 route	
 (531k	
 routes)	

u Random	
 traffic	

p  175	
 Mlps	
 per	
 core	

u SynthePc	
 800k	
 routes	

u Random	
 traffic	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 46	

Ongoing	
 Project	

n  Socket	
 API	
 extension	
 for	
 middleboxes/VNF	
 (Virtualized	

Network	
 FuncPon)	

p  Virtual	
 machine	
 ←	
 ETSI’s	
 approach	

u  Network	
 abstracPon:	
 Virtual	
 NIC	

–  Pros:	
 Any	
 kinds	
 of	
 OS	
 works	

–  Cons:	
 Overhead	
 of	
 virtualizaPon	
 (incl.	
 VMEntry/VMExit)	

p  Container	

u  Network	
 abstracPon:	
 Virtual	
 NIC	

–  Pros:	
 Linux	
 works	
 (when	
 we	
 use	
 Linux	
 Container)	

–  Cons:	
 Overhead	
 of	
 virtualized	
 NIC	
 driver	

p  Process	
 ß	
 My	
 focus	

u  Network	
 abstracPon:	
 Socket	
 API	

–  Pros:	
 No	
 overhead	
 (a	
 few	
 scheduler	
 overhead)	
 in	
 my	
 design	

–  Cons:	
 Socket	
 API	
 is	
 not	
 good	
 for	
 packet	
 processing	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 47	

Non-­‐TCP/UDP	
 Socket	

n  ExisPng	
 socket	
 /	
 IPPROTO	

p  SOCK_RAW	

u Privileged	
 socket…	

p  SOCK_DGRAM	
 (IPPROTO_UDP)	
 /	
 SOCK_STREAM	

(IPPROTO_TCP)	

u Basically	
 UDP/TCP	
 (Cannot	
 handle	
 Ethernet,	
 IP)	

n  Socket	

p  SOCK_DGRAM	
 +	
 IPPROTO_ETHERNET	
 (IPPROTO?)	

u Bind	
 a	
 MAC	
 address	

p  SOCK_DGRAM	
 +	
 IPPROTO_IP	
 (IPPROTO?)	

u Bind	
 an	
 IP	
 address	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 48	

Conclusion	

n  VFSR:	
 Very	
 Fast	
 Soaware	
 Router	

p  EssenPal	
 Components	

1.  Fast	
 packet	
 forwarding	

–  High-­‐rate	
 per	
 core/port	
 for	
 in-­‐order	
 processing	

2.  Fast	
 IP	
 rouPng	
 table	
 lookup	

–  #	
 of	
 routes:	
 >512k	
 (envisioning	
 >800k)	

–  High-­‐rate	
 per	
 core	
 for	
 in-­‐order	
 processing	

n  Socket	
 API	
 extension	
 for	
 process-­‐based	
 NFV	

p  as	
 ongoing	
 work	

April	
 9th,	
 2015	
 H.	
 Asai,	
 "Networking	
 OperaPng	
 System	
 from	
 Scratch"	
 49	

