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u  Distributed	
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  (especially	
  Internet-­‐wide	
  system)	
  
u  Internet	
  traffic	
  and	
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Trends	
  on	
  Network	
  FuncPonaliPes	
  
by	
  Soaware	
  on	
  COTS	
  hardware	


n  SDN:	
  Soaware	
  Defined	
  Network	
  
p  SeparaPon	
  of	
  

u Forwarding	
  Plane;	
  by	
  hardware	
  
u Control	
  Plane;	
  by	
  soaware	
  

n  NFV:	
  Network	
  FuncPon	
  VirtualizaPon	
  
p Network	
  funcPon	
  by	
  soaware	
  with	
  virtualizaPon	
  
technologies	
  (e.g.,	
  virtual	
  machine,	
  container,	
  
process)	
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Networking	
  OperaPng	
  System	


n  “OperaPng	
  System”	
  (OS)	
  
p  Fundamental	
  system	
  soaware	
  in	
  charge	
  of	
  

u Resource	
  management	
  (hardware/soaware)	
  
u ProtecPon,	
  Filesystem,	
  mulPtasking	
  etc.	
  

n  COTS	
  Network	
  FaciliPes	
  (using	
  generic	
  CPU)	
  
=	
  Networking	
  Opera/ng	
  System	
  
p  Inexpensive	
  
p  Flexible	
  
p  Extensible	
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DeparPng	
  from	
  Generic	
  OS	
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  App.	


skbuff	
 syscall	
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Kernel	


Fat	
  kernel,	
  many	
  overhead,	
  dirty-­‐slate	
  
Clean-­‐slate	
  approach	


Generic	
  OS:	
  Not	
  designed	
  for	
  networking	
  faciliPes	




Networking	
  OperaPng	
  System	
  
from	
  Scratch	


n  “from	
  scratch”	
  
1.  Evaluate	
  the	
  best	
  performance	
  of	
  COTS	
  

hardware	
  
u Bolleneck	
  analysis	
  

2.  Design	
  new	
  algorithm/architecture	
  
u Scheduler	
  
u Memory	
  management	
  
u ProtecPon	
  
u Protocol	
  stack	
  
u RouPng	
  table	
  lookup	
  algorithm	
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Towards	
  High-­‐Performance	
  Network	
  
Facili/es	
  with	
  COTS	
  hardware	


April	
  9th,	
  2015	
 H.	
  Asai,	
  "Networking	
  OperaPng	
  System	
  from	
  Scratch"	
 7	




Network	
  FaciliPes	
  with	
  COTS	
  hardware	


n  Background	
  
p  Generic	
  CPU	
  (IA)	
  for	
  packet	
  processing	
  
p  PCIe	
  NIC	
  for	
  packet	
  forwarding	
  

n  Goal:	
  High-­‐performance	
  network	
  faciliPes	
  w/	
  
soaware	
  
p  Router:	
  40GbE/100GbE	
  line-­‐rate	
  rouPng	
  (1M	
  RiB	
  
entries)	
  

p  Middlebox:	
  Firewall,	
  Load-­‐balancer,	
  etc.	
  
p  Server	
  apps:	
  HTTP,	
  AuthenPcaPon,	
  AccounPng,	
  etc.	
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VFSR:	
  Very	
  Fast	
  Soaware	
  Router	


n  EssenPal	
  Components	
  
1.  Fast	
  packet	
  forwarding	
  

u High-­‐rate	
  per	
  core/port	
  for	
  in-­‐order	
  processing	
  

2.  Fast	
  IP	
  rouPng	
  table	
  lookup	
  
u #	
  of	
  routes:	
  >512k	
  (envisioning	
  >800k)	
  
u High-­‐rate	
  per	
  core	
  for	
  in-­‐order	
  processing	
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Key	
  Numerical	
  Values	
  of	
  “fast”:	
  
Packet	
  Rate	
  for	
  10/40/100GbE	


n  Ethernet	
  
p Minimum	
  frame	
  length:	
  64-­‐Byte	
  
(=Maximum	
  frame	
  rate)	
  
u 1GbE:	
  1.488Mpps	
  

=	
  672	
  ns/packet	
  
u 10GbE:	
  14.88Mpps	
  

=	
  67.2	
  ns/packet	
  
u 40GbE:	
  59.52Mpps	
  

=	
  16.8	
  ns/packet	
  
u 100GbE:	
  148.8Mpps	
  

=	
  6.72	
  ns/packet	
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Myths	
  on	
  Packet	
  Forwarding	


n  Bollenecks	
  in	
  packet	
  forwarding	
  
p  CPU	
  is	
  slow.	
  

u Yes,	
  for	
  packet	
  processing,	
  but	
  forwarding	
  requires	
  only	
  
a	
  set	
  of	
  simple	
  instrucPons	
  
–  e.g.,	
  0.3	
  ns	
  /	
  CPU	
  cycle	
  @	
  3.3GHz	
  CPU	
  

p Memory	
  copy	
  is	
  so	
  heavy.	
  
u At	
  least,	
  throughput	
  is	
  enough.	
  

–  e.g.,	
  DDR3-­‐1866	
  Dual	
  Channel:	
  29.867GB/s	
  (238.933Gbps)	
  	
  
p  Interrupts	
  incur	
  excessive	
  overheads.	
  

u Not	
  excessive,	
  but	
  non-­‐negligible	
  for	
  100	
  GbE	
  
–  Discuss	
  this	
  later	
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Real	
  Bolleneck	
  on	
  Packet	
  Forwarding	

n  PCIe	
  device	
  register	
  access	
  

=	
  Memory	
  Mapped	
  I/O	
  (MMIO)	
  
–  No	
  cache	
  

u  ~250ns/access	
  [Miller	
  et	
  al.	
  ACM	
  ANCS	
  ’09]	
  
p  Read	
  

u  1529.17	
  cycles	
  /	
  read	
  
u  392.1	
  ns	
  /	
  read	
  

p  Write	
  
u  282.621	
  cycles	
  /	
  write	
  
u  72.47	
  ns	
  /	
  write	


※Measure	
  CPU	
  cycles	
  to	
  access	
  to	
  the	
  same	
  register	
  
1	
  million	
  Pmes	
  by	
  Performance	
  Monitoring	
  Counter	
  (PMC)	
  

CPU:	
  Intel	
  Core	
  i7	
  4770K	
  
Memory:	
  Corsair	
  DDR3-­‐1866	
  8GB	
  x4	
  
NIC:	
  Intel	
  X520-­‐DA2	
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Review:	
  Generic	
  NIC	
  Architecture	


18	


Ring	
  buffer	

Descriptors	
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Review:	
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  NIC	
  Architecture	
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Ring	
  buffer	

Descriptors	
 Buffer	


Packet	
  recep/on	
  
1.  NIC	
  receives	
  a	
  packet	
  
2.  NIC	
  transfer	
  the	
  packet	
  data	
  to	
  

a	
  buffer	
  in	
  RAM	
  via	
  DMA	
  
3.  NIC	
  proceeds	
  the	
  head	
  pointer	
  
4.  Soaware	
  processes	
  the	
  packet	
  
5.  Soaware	
  proceeds	
  the	
  tail	
  

pointer	
  to	
  release	
  the	
  packet	
  

(3)	
  head	


(2)	


(5)	
  tail	
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Ring	
  buffer	

Descriptors	
 Buffer	


Packet	
  transmission	
  
1.  Soaware	
  writes	
  a	
  packet	
  to	
  a	
  

buffer	
  in	
  RAM	
  
2.  Soaware	
  proceeds	
  the	
  tail	
  

pointer	
  to	
  commit	
  the	
  packet	
  
3.  NIC	
  transfer	
  the	
  packet	
  data	
  

from	
  the	
  buffer	
  in	
  RAM	
  via	
  
DMA	
  

4.  NIC	
  transmit	
  the	
  packet	
  
5.  NIC	
  proceeds	
  the	
  head	
  pointer	
  

to	
  noPfy	
  the	
  packet	
  is	
  
transmiled	
  

(2)	
  tail	


(1)	


(5)	
  head	
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Polling	
  &	
  Bulk	
  Processing	
  
(Transmission,	
  Intel®	
  X520)	
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txq_tail = 0;
for ( ;; ) {

txq_head = read_txq_head();
/* Available Tx queue length */
txq_len = txq_sz

- (txq_sz - txq_head + txq_tail) % txq_sz;
/* Check the available Tx queue length */
if ( txq_len < n ) continue;
for ( i = 0; i < n; i++ ) {

// Set packet to the ring buffer to txq_tail
txq_ring[txq_tail].pkt = pkt_to_transmit;
txq_tail = (txq_tail + 1)  % txq_sz

}
/* Commit */
write_txq_tail(txq_tail);

}	


~392.1ns	


~72.47ns	


Note:	
  Can	
  be	
  
opPmized…	




Tx	
  Performance	
  by	
  bulk	
  size	
  
(Intel®	
  X520)	
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Note:	
  Also	
  confirmed	
  59.52	
  Mpps	
  Tx	
  (2	
  Intel®	
  X520-­‐DA2)	
  @	
  1	
  core	
  from	
  Intel®	
  Core	
  i7-­‐4770K	




Intel®	
  XL710’s	
  OperaPon	
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Host	


NIC	
  (PCIe)	


(1)	


(1) Write	
  the	
  tail	
  pointer	
  (MMIO	
  write)	
  
(2)  Transfer	
  the	
  packets	
  via	
  DMA	
  
(3) Write-­‐back	
  the	
  transfer	
  status	


(2)	


Transmission	


(3)	


Recep/on	


(1)	


(1)  Transfer	
  the	
  packets	
  via	
  DMA	
  with	
  status	
  
(2) Write	
  the	
  tail	
  pointer	
  (MMIO	
  write)	


(2)	
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txq_tail = 0;
for ( ;; ) {

completed = check_wb_status(txq_tail, n);
/* Check the transmission is completed */
if ( !completed ) continue;
for ( i = 0; i < n; i++ ) {

// Set packet to the ring buffer to txq_tail
txq_ring[txq_tail].pkt = pkt_to_transmit;
txq_tail = (txq_tail + 1)  % txq_sz

}
/* Commit */
write_txq_tail(txq_tail);

}	


PCIe	
  MMIO	


Note:	
  Can	
  be	
  
opPmized…	




Intel®	
  XL710’s	
  performance	
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Latency	
  measurement	


n  Experimental	
  setup	
  
p  Tester	
  

u Spirent	
  CommunicaPons	
  Spirent	
  TestCenter	
  
–  Chassis:	
  SPT-­‐N4U-­‐110	
  
– Module:	
  CV-­‐10G-­‐S8	
  	
  

u Supported	
  by	
  株式会社東陽テクニカ様	
  during	
  Interop	
  
Tokyo	
  2014	
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pushq %rax
pushq %rbx
pushq %rcx
pushq %rdx
pushq %rdi
pushq %rsi
pushq %rbp
pushq %r8
pushq %r9
pushq %r10
pushq %r11
pushq %r12
pushq %r13
pushq %r14
pushq %r15
call _kintr

popq %r15
popq %r14
popq %r13
popq %r12
popq %r11
popq %r10
popq %r9
popq %r8
popq %rbp
popq %rsi
popq %rdi
popq %rdx
popq %rcx
popq %rbx
popq %rax
iretq

Latency	
 Throughput	


PUSH	
  (@0F_2H)	
 1.5	
 1	


POP	
  (@0F_2H)	
 1.5	
 1	


CLI	
  (@06_2A/2D)	
 5	
 2	


Push	
  15	
  general	
  purpose	
  registers	
  onto	
  the	
  stack,	
  
pop	
  15	
  general	
  purpose	
  registers	
  from	
  the	
  stack,	
  
and	
  then	
  return	
  to	
  the	
  restore	
  point	
  
while	
  popping	
  the	
  original	
  stack	
  pointer	
  etc.	
  

Referred	
  from	
  Intel®	
  64	
  and	
  IA-­‐32	
  
Architectures	
  OpPmizaPon	
  Reference	
  Manual	
  	
  

30	
  CPU	
  cycles	
  for	
  push/pop	
  instrucPons	
  
è	
  10	
  ns	
  @3GHz	
  CPU	
  



Interim	
  Summary	


n  Faster	
  packet	
  forwarding	
  
p  Reduce	
  slow	
  PCIe	
  MMIO	
  
è	
  Key:	
  Bulk	
  processing	
  
u Read	
  

–  392.1	
  ns	
  /	
  read	
  
u Write	
  

–  72.47	
  ns	
  /	
  write	


p  Avoid	
  using	
  interrupt	
  handlers	
  for	
  40GbE/100GbE	
  
è	
  Key:	
  Polling,	
  Tickless	
  
u 10	
  ns	
  to	
  save	
  and	
  restore	
  CPU’s	
  registers	
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VFSR:	
  Very	
  Fast	
  Soaware	
  Router	


n  EssenPal	
  Components	
  
1.  Fast	
  packet	
  forwarding	
  

u High-­‐rate	
  per	
  core/port	
  for	
  in-­‐order	
  processing	
  

2.  Fast	
  IP	
  rouPng	
  table	
  lookup	
  
u #	
  of	
  routes:	
  >512k	
  (envisioning	
  >800k)	
  
u High-­‐rate	
  per	
  core	
  for	
  in-­‐order	
  processing	
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  Lookup	


Hirochika	
  Asai	
  (Univ.	
  of	
  Tokyo)	
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 64.0.0.0/2	


64.0.0.0/3	


Binary	
  Radix	
  Tree	

Problem	
  with	
  binary	
  radix	
  tree	
  
•  Depth	
  up	
  to	
  32	
  (for	
  IPv4)	
  
•  Too	
  many	
  pointers	
  

è	
  Slow	
  



Principle	
  Ideas	
  towards	
  Faster	
  IP	
  
RouPng	
  Table	
  Lookup	
  Algorithm	


n  Reduce	
  the	
  number	
  of	
  instrucPon,	
  
especially	
  memory	
  access	
  
p  1	
  or	
  a	
  few	
  cycles	
  for	
  most	
  of	
  bitwise	
  instrucPons	
  
p  Memory	
  access	
  latency	
  (in	
  Intel	
  Core	
  i7-­‐4770K)	
  

u  L1	
  cache:	
  4-­‐5	
  cycles	
  
u  L2	
  cache:	
  12	
  cycles	
  
u  L3	
  cache:	
  27.85	
  cycles	
  
u DRAM:	
  ~65	
  ns	
  

n  Reduce	
  memory	
  footprint	
  
p  Maximize	
  CPU	
  cache	
  efficiency	
  

u  L1/L2/L3	
  cache	
  size	
  in	
  Intel	
  Core	
  i7-­‐4770K	
  
–  64	
  KiB,	
  256	
  KiB,	
  8	
  MiB	
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Reduce	
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Figure 1: The 2k-ary radix tree (k = 2).

gregation”, is not our contribution, and is applicable to other
lookup technologies as well. Unless otherwise noted, the
performance results shown in this paper are with the route
aggregation option.

Poptrie is extended from the multiway trie (i.e., M -way
or M -ary where M = 2k). The 2k-ary radix tree where
k = 2 is illustrated in Figure 1. Each node holds 2k ele-
ments in the descendant array, corresponding to the value of
the k-bit chunk in the key IP address. An element in the de-
scendant array points to its next-level child internal node or
a leaf node holding an index to the corresponding FIB entry.
Although we selected k = 6 for our implementation to fit the
size of registers of the 64-bit CPU architecture, we illustrate
the k = 2 case in this section for the brevity. The admirable
performance of Poptrie is due to the small memory footprint
so that it can be contained completely within the CPU cache,
and yet it leverages the effective multiway branching to re-
duce the total number of steps that is necessary to search
down the tree.

We describe the options in Poptrie step by step; the basic
mechanism in Section 3.1, the lookup algorithm in the basic
mechanism in Section 3.2, the leafvec extension to compress
the size of leaf nodes in Section 3.3, and the additional op-
tions of direct pointing in Section 3.4. The internal node
in the basic poptrie contains vector, base0, and base1, and
which are 8 bytes, 4 bytes, and 4 bytes, respectively. Hence
the total size of an internal node is only 16 bytes. When we
use the leafvec extension, we will add 8 bytes of leafvec in
the internal node, so the size of an internal node is then 24
bytes. Usually, we will use all the extensions and options in
the later evaluation, unless otherwise noted explicitly. In the
implementation, the contiguous arrays of internal and leaf
nodes are managed by a fast memory allocator [14] known
as the buddy memory allocator.

3.1 Basic Mechanism
First, the descendant array in the multiway trie is changed

to be a bitwise array (i.e., a bit vector) in Poptrie. The vec-
tor and the base1 collectively serve as the descendant array.
The vector is a bit-vector index of the length 2k bits, for the
current k-bit address chunk. The n-th bit in the vector corre-
sponds to the child node with the value n in the current k-bit

31270 0 1 0 2498

vector base0 base1

child nodeN

L[3127] L[3128] L[3129]
7 7 7

internal node

L
N[2498]

Figure 2: The vector in the internal node is con-
figured so that the bit-1 indicates a descendant
node, and the bit-0 indicates a leaf node.

address chunk. Each bit in the vector indicates the type of
the corresponding child node: the bit is set to 1 if the cor-
responding child is an internal node, and it is set to 0 if the
corresponding child is a leaf node. In other words, the vector
indicates the existence of the corresponding descendant in-
ternal node, and then if there is no descendant internal node,
the search will always result in a leaf node in the very level
of the tree.

The necessary descendant internal or leaf nodes are placed
so that they form a contiguous array. The array starts with
the descendant node which corresponds to n = 0, in the
ascending order up to n = 63 when k = 6. However, unnec-
essary nodes are skipped; if the node corresponds to n = 0
is not necessary, the array can start with n = 1, with corre-
sponding bits in vector properly set. This way, unnecessary
descendant nodes which do not have branches or leaf infor-
mation are omitted, allowing compact data structure size and
efficient use of memory.

The next node in the search within the tree can be ob-
tained as follows: Since the value n of the current k-bit ad-
dress chunk corresponds to the n-th bit in the vector, the
number of 1s in the least significant n + 1 bits of the vector
can be used as the index of the next node within the current
internal node’s descendant array. Here, we can utilize the
popcnt CPU instruction to accelerate the calculation of the
next node in the search procedure, as described later in Sec-
tion 3.2. Since vector bit-vector only provides the indirect
address (i.e., index) within the current descendant array, it
is necessary to provide the starting point of the descendant
array. The base1 is the base index to the consecutive sub-
sequence of the internal nodes that are the children of this
node. Similarly, the indirect index of the leaf node is ob-
tained by counting the 0 in the vector. The starting offset for
the leaf node is contained in base0. Figure 2 illustrates an
example of the indirect index of internal and leaf nodes with
vector, base1, and base0.

3.2 Lookup Algorithm
The lookup algorithm steps down the tree according to the

specified IP address like the normal 2k-ary radix tree to find
the leaf node. At the depth of d, the d-th chunk of the ad-

3
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gregation”, is not our contribution, and is applicable to other
lookup technologies as well. Unless otherwise noted, the
performance results shown in this paper are with the route
aggregation option.

Poptrie is extended from the multiway trie (i.e., M -way
or M -ary where M = 2k). The 2k-ary radix tree where
k = 2 is illustrated in Figure 1. Each node holds 2k ele-
ments in the descendant array, corresponding to the value of
the k-bit chunk in the key IP address. An element in the de-
scendant array points to its next-level child internal node or
a leaf node holding an index to the corresponding FIB entry.
Although we selected k = 6 for our implementation to fit the
size of registers of the 64-bit CPU architecture, we illustrate
the k = 2 case in this section for the brevity. The admirable
performance of Poptrie is due to the small memory footprint
so that it can be contained completely within the CPU cache,
and yet it leverages the effective multiway branching to re-
duce the total number of steps that is necessary to search
down the tree.

We describe the options in Poptrie step by step; the basic
mechanism in Section 3.1, the lookup algorithm in the basic
mechanism in Section 3.2, the leafvec extension to compress
the size of leaf nodes in Section 3.3, and the additional op-
tions of direct pointing in Section 3.4. The internal node
in the basic poptrie contains vector, base0, and base1, and
which are 8 bytes, 4 bytes, and 4 bytes, respectively. Hence
the total size of an internal node is only 16 bytes. When we
use the leafvec extension, we will add 8 bytes of leafvec in
the internal node, so the size of an internal node is then 24
bytes. Usually, we will use all the extensions and options in
the later evaluation, unless otherwise noted explicitly. In the
implementation, the contiguous arrays of internal and leaf
nodes are managed by a fast memory allocator [14] known
as the buddy memory allocator.

3.1 Basic Mechanism
First, the descendant array in the multiway trie is changed

to be a bitwise array (i.e., a bit vector) in Poptrie. The vec-
tor and the base1 collectively serve as the descendant array.
The vector is a bit-vector index of the length 2k bits, for the
current k-bit address chunk. The n-th bit in the vector corre-
sponds to the child node with the value n in the current k-bit
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vector base0 base1

child nodeN
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internal node

L
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Figure 2: The vector in the internal node is con-
figured so that the bit-1 indicates a descendant
node, and the bit-0 indicates a leaf node.

address chunk. Each bit in the vector indicates the type of
the corresponding child node: the bit is set to 1 if the cor-
responding child is an internal node, and it is set to 0 if the
corresponding child is a leaf node. In other words, the vector
indicates the existence of the corresponding descendant in-
ternal node, and then if there is no descendant internal node,
the search will always result in a leaf node in the very level
of the tree.

The necessary descendant internal or leaf nodes are placed
so that they form a contiguous array. The array starts with
the descendant node which corresponds to n = 0, in the
ascending order up to n = 63 when k = 6. However, unnec-
essary nodes are skipped; if the node corresponds to n = 0
is not necessary, the array can start with n = 1, with corre-
sponding bits in vector properly set. This way, unnecessary
descendant nodes which do not have branches or leaf infor-
mation are omitted, allowing compact data structure size and
efficient use of memory.

The next node in the search within the tree can be ob-
tained as follows: Since the value n of the current k-bit ad-
dress chunk corresponds to the n-th bit in the vector, the
number of 1s in the least significant n + 1 bits of the vector
can be used as the index of the next node within the current
internal node’s descendant array. Here, we can utilize the
popcnt CPU instruction to accelerate the calculation of the
next node in the search procedure, as described later in Sec-
tion 3.2. Since vector bit-vector only provides the indirect
address (i.e., index) within the current descendant array, it
is necessary to provide the starting point of the descendant
array. The base1 is the base index to the consecutive sub-
sequence of the internal nodes that are the children of this
node. Similarly, the indirect index of the leaf node is ob-
tained by counting the 0 in the vector. The starting offset for
the leaf node is contained in base0. Figure 2 illustrates an
example of the indirect index of internal and leaf nodes with
vector, base1, and base0.

3.2 Lookup Algorithm
The lookup algorithm steps down the tree according to the

specified IP address like the normal 2k-ary radix tree to find
the leaf node. At the depth of d, the d-th chunk of the ad-
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gregation”, is not our contribution, and is applicable to other
lookup technologies as well. Unless otherwise noted, the
performance results shown in this paper are with the route
aggregation option.

Poptrie is extended from the multiway trie (i.e., M -way
or M -ary where M = 2k). The 2k-ary radix tree where
k = 2 is illustrated in Figure 1. Each node holds 2k ele-
ments in the descendant array, corresponding to the value of
the k-bit chunk in the key IP address. An element in the de-
scendant array points to its next-level child internal node or
a leaf node holding an index to the corresponding FIB entry.
Although we selected k = 6 for our implementation to fit the
size of registers of the 64-bit CPU architecture, we illustrate
the k = 2 case in this section for the brevity. The admirable
performance of Poptrie is due to the small memory footprint
so that it can be contained completely within the CPU cache,
and yet it leverages the effective multiway branching to re-
duce the total number of steps that is necessary to search
down the tree.

We describe the options in Poptrie step by step; the basic
mechanism in Section 3.1, the lookup algorithm in the basic
mechanism in Section 3.2, the leafvec extension to compress
the size of leaf nodes in Section 3.3, and the additional op-
tions of direct pointing in Section 3.4. The internal node
in the basic poptrie contains vector, base0, and base1, and
which are 8 bytes, 4 bytes, and 4 bytes, respectively. Hence
the total size of an internal node is only 16 bytes. When we
use the leafvec extension, we will add 8 bytes of leafvec in
the internal node, so the size of an internal node is then 24
bytes. Usually, we will use all the extensions and options in
the later evaluation, unless otherwise noted explicitly. In the
implementation, the contiguous arrays of internal and leaf
nodes are managed by a fast memory allocator [14] known
as the buddy memory allocator.

3.1 Basic Mechanism
First, the descendant array in the multiway trie is changed

to be a bitwise array (i.e., a bit vector) in Poptrie. The vec-
tor and the base1 collectively serve as the descendant array.
The vector is a bit-vector index of the length 2k bits, for the
current k-bit address chunk. The n-th bit in the vector corre-
sponds to the child node with the value n in the current k-bit
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vector base0 base1

child nodeN

L[3127] L[3128] L[3129]
7 7 7

internal node

L
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Figure 2: The vector in the internal node is con-
figured so that the bit-1 indicates a descendant
node, and the bit-0 indicates a leaf node.

address chunk. Each bit in the vector indicates the type of
the corresponding child node: the bit is set to 1 if the cor-
responding child is an internal node, and it is set to 0 if the
corresponding child is a leaf node. In other words, the vector
indicates the existence of the corresponding descendant in-
ternal node, and then if there is no descendant internal node,
the search will always result in a leaf node in the very level
of the tree.

The necessary descendant internal or leaf nodes are placed
so that they form a contiguous array. The array starts with
the descendant node which corresponds to n = 0, in the
ascending order up to n = 63 when k = 6. However, unnec-
essary nodes are skipped; if the node corresponds to n = 0
is not necessary, the array can start with n = 1, with corre-
sponding bits in vector properly set. This way, unnecessary
descendant nodes which do not have branches or leaf infor-
mation are omitted, allowing compact data structure size and
efficient use of memory.

The next node in the search within the tree can be ob-
tained as follows: Since the value n of the current k-bit ad-
dress chunk corresponds to the n-th bit in the vector, the
number of 1s in the least significant n + 1 bits of the vector
can be used as the index of the next node within the current
internal node’s descendant array. Here, we can utilize the
popcnt CPU instruction to accelerate the calculation of the
next node in the search procedure, as described later in Sec-
tion 3.2. Since vector bit-vector only provides the indirect
address (i.e., index) within the current descendant array, it
is necessary to provide the starting point of the descendant
array. The base1 is the base index to the consecutive sub-
sequence of the internal nodes that are the children of this
node. Similarly, the indirect index of the leaf node is ob-
tained by counting the 0 in the vector. The starting offset for
the leaf node is contained in base0. Figure 2 illustrates an
example of the indirect index of internal and leaf nodes with
vector, base1, and base0.

3.2 Lookup Algorithm
The lookup algorithm steps down the tree according to the

specified IP address like the normal 2k-ary radix tree to find
the leaf node. At the depth of d, the d-th chunk of the ad-
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Further	
  Compression:	
  Leaf	
  Vector	
  to	
  
Remove	
  Redundant	
  Leaf	
  Nodes	


Algorithm 1 lookup (t = (N , L), key); the lookup
procedure for the address key in the tree t (when k =
6). The function extract(key, off, len) extracts bits of
length len, starting with the offset off, from the address
key. N and L represent arrays of internal nodes and
leaves, respectively. ≪ denotes the shift instruction of
bits.
1: index = 0;
2: vector = t.N [index].vector;
3: offset = 0;
4: v = extract (key, offset, 6);
5: while (vector & (1ULL ≪ v)) do
6: base = t.N [index].base1;
7: bc = popcnt (vector & ((2ULL ≪ v) - 1));
8: index = base + bc - 1;
9: vector = t.N [index].vector;
10: offset += 6;
11: v = extract (key, offset, 6);
12: end while
13: base = t.N [index].base0;
14: bc = popcnt ((∼t.N [index].vector) & ((2ULL ≪ v) - 1));
15: return t.L[base + bc - 1];

dress is used as the index of the vector in the internal node.
Let the value of the d-th chunk in the key address be n, and
then the lookup at the depth of d is executed as follows: If
the corresponding bit is one, then the lookup algorithm con-
tinues to the next depth. The index of the next internal node
in the descendant array is computed by adding to the base1
the number of 1s in the least significant n+1 bits of the vec-
tor minus 1. If the corresponding bit is zero, then the lookup
algorithm finishes the lookup by finding a leaf node. The in-
dex of the leaf node in the leaf array is computed by adding
to the base0 the number of 0s in the least significant n + 1
bits of the vector minus 1.

The unique key point in Poptrie is the use of the instruc-
tion to count the number of 1s and 0s in a bit string. Those
counts are used as the indirect index of the descendant node
and the leaf node, respectively. The procedure of counting
the number of 1s in a bit string is called “population count”,
and an instruction executing the population count, popcnt,
has been implemented in the CPU instruction set of x86 pro-
cessors. When the popcnt CPU instruction is not available,
a fast alternative can be found in the literature [32].

The lookup algorithm is shown in Algorithm 1 where the
length of the chunk k = 6. The algorithm takes the poptrie
structure t and the IP address key as its input arguments, and
returns the content of the longest matching leaf. In t, there
are the internal node array N , and the leaf array L. In Line 1
the index is set to 0 to access the root internal node. Line 2
accesses to the vector of the root internal node. In Line 4,
we obtain the value of the first 6-bit chunk from the offset 0.
Line 5 to Line 12 are the main loop that continues as long as
there is a corresponding descendant internal node (checked
in Line 5). Line 7 gets the population count of set bits in
the least significant v + 1 bits and store it in bc. The next
node’s index is calculated (Line 8), the next node’s vector is
prepared to be checked (Line 9), and the chunk is shifted by

0 0 0 1 31270 0 1 0 2498

leafvec vector base0 base1

child nodeN

L[3127] L[3128] L[3129]
7 7 7

internal node

L

Hole punching

N[2498]

irrelevant

Figure 3: Merging identical leaf nodes with ig-
noring a hole punching using the leafvec

6 bits for the next round of the loop (Line 10, 11). Line 13
to 15 calculates the indirect index of the corresponding leaf,
and returns the content.

3.3 Compression with the Leaf Bit-Vector
The basic algorithm described in the previous subsection

yields many duplicate and redundant leaves. In the ordinary
2k-ary radix tree, an identical leaf node (i.e., the same FIB
entries) may redundantly span to multiple leaf nodes within
an internal node, up to 2k leaf nodes. Hence, the redundant
leaf nodes consume significant memory. In order to avoid
them, leafvec is introduced in the poptrie internal node. The
leafvec and base0 collectively serve as the base and the in-
direct index to locate the leaf node, which is similar to the
vector and base1 described in the previous section. The indi-
rect index with base offset using the leafvec and base0 omits
the redundant information as long as the redundant leaf slots
are contiguous. For example, if all the 64 slots in an internal
node contains the same value, it can be compressed to just
one leaf slot with only the least-significant bit in the leafvec
being 1. The indirect index for the leaf that corresponds to
the value n for the current chunk is calculated as the number
of 1s in the least-significant n + 1 bits in the leafvec. This
way, all the indirect indices for any value n fall into the first
leaf slot, making the efficient memory compression.

This mechanism also avoids the issue with so called hole-
punching, which sometimes prevent the leaves from being
contiguous, disabling the aforementioned efficient leaf com-
pression. In Poptrie, the contiguity is regained by making the
leaf slot irrelevant if there is a descendant internal node that
corresponds to the leaf slot. The lookup algorithm checks al-
ways the existence of the descendant internal node first, and
if there is one, the lookup never tracks back from the lower
level to the current level. Hence the leaf slot with a corre-
sponding descendant internal node is made irrelevant, and is
set to 0. Then, we may make the leaf slot contiguous again,
ignoring those leaf slots with corresponding descendant in-
ternal node, as shown in Figure 3.

The modification in the algorithm is shown in Algorithm 2.
Only the Line 14 is changed from Algorithm 1 so that it
checks the newly introduced leafvec field to compute the

4

One	
  of	
  the	
  problem	
  with	
  the	
  basic	
  data	
  structure	
  
-­‐  Redundant	
  leaf	
  nodes	
  for	
  prefixes	
  that	
  do	
  not	
  match	
  k-­‐bit	
  boundary	
  
-­‐  e.g.,	
  /1	
  (/7,	
  etc.	
  as	
  well)	
  may	
  create	
  32	
  redundant	
  leaf	
  nodes	
  when	
  k=6	


April	
  9th,	
  2015	
 H.	
  Asai,	
  "Networking	
  OperaPng	
  System	
  from	
  Scratch"	
 39	




Visualized	
  Lookup	
  Algorithm	
  Example	
Algorithm 2 The leaf compression algorithm; the dif-
ferences from the Algorithm 1. Only Line 14 is substi-
tuted.
14: bc = popcnt (t.N [index].leafvec & ((2ULL ≪ v) - 1));
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Figure 4: The data structure of Poptrie where
k = 2, and the lookup procedure for 0110b.

corresponding leaf index. An example of the lookup proce-
dure using leafvec is illustrated in Figure 4; an 8-bit address
01100111b is searched as follows: (a) It takes the first two
bits (01b) from the address, and then picks a bit correspond-
ing to this index (the second bit from the right). (b) It finds
the base address of the next subsequence of internal nodes
using the base1 member. (c) It counts the number of 1s in
the least significant two bits of the vector member minus
1 (= 1), and finds the next internal node. (d) It takes the
second two bits from the address (10b), and then picks a bit
corresponding to this index (the third bit from the right). The
bit is 0 in vector, so the search switches to find a leaf. (e) It
finds the base address for the corresponding leaf nodes from
base0. (f) It counts the number of 1s in the least significant
three bits of the leafvec minus 1 (= 0), and finally finds the
leaf node.

3.4 Direct Pointing
The depth (height) in Poptrie may grow as large as six in-

ternal node levels in the case of IPv4 address of length 32
bits and the 6-bits chunk length (k = 6). This depth can be
reduced if we allow some increase in memory footprint. As
we will see later in Section 4.1, most prefixes in the realis-
tic datasets are distributed in the range of prefix length from
/11 through /24. This means that the lookup algorithm of
Poptrie needs to traverse at least two internal nodes from its
root to reach a leaf node for most IP addresses. Hence, it
is common to conduct an optimization technique such that
the most significant s bits are just extracted to an array of
length 2s elements that points to the corresponding descen-
dant node or directly to the leaf node. Examples can be seen
in DIR-24-8-BASIC, DXR and SAIL.

With the s variable specifying how many of the most sig-
nificant bits should be used as the direct index. It enables us
to jump directly to the corresponding leaf or internal node,
by accessing the n-th elements in the top-level array, where
n is the value of the most significant s-bits in the given key.
The direct pointing increases the memory footprint by 4×2s

{
{
{

6bits

6bits

6bits

poptrie (s=0)

}root
internal node

FIB table

(a) Without Direct Pointing.

poptrie (s=12)

top-level array

Direct pointing

FIB table

(b) Direct Pointing.

Figure 5: Direct pointing (k = 6, s = 12).

Algorithm 3 The direct pointing algorithm; the differ-
ences from Algorithm 1. Line 1 and 2 in Algorithm 1
are replaced with the statements below.
1: index = extract (key, 0, t.s);
2: dindex = t.D[index].direct index;
3: if (dindex & (1UL ≪ 31)) then
4: return t.L[dindex & ((1UL ≪ 31) - 1)];
5: end if
6: index = dindex;
7: offset = t.s;

bytes at maximum in our implementation where the size of
each element in the top-level array is 4 bytes.

The modifications to Algorithm 1 are shown in
Algorithm 3. The value of the element in the top-level array
is called “direct index”. If the most significant bit is set in
the direct index, the remaining bits in the direct index point
to the leaf node directly. Otherwise, the direct index points
to the internal node and further search is necessary.

3.5 Incremental Update
Although compilation time of Poptrie from scratch, i.e.,

rebuilding the data structure entirely from the RIB, is short
(less than 70 milliseconds as shown later in Table 2), it is
generally desired to have a way to quickly update the FIB in-
crementally. The incremental update of Poptrie is performed
by replacing only the updated part of the trie.

Blocking the read access to Poptrie using write lock is
not acceptable because it blocks IP forwarding process for a
considerable amount of time. Hence, we opt for a lock-free
approach for the incremental update in Poptrie. In either
way, the data structure must be kept consistent all the time.
The strategy here is to let the IP forwarding process keep re-
ferring to the current (i.e., older) FIB while the construction
of the updated FIB is ongoing. When the update is finished,
the current FIB is switched to the new one, by changing the
pointer or the index of the FIB using an atomic instruction.
Since the FIB lookup is read-only procedure and we assume
the single-threaded update operation, the atomic instruction
can ensure the consistency. The simplicity of Poptrie en-
ables this approach on the various part and level of the data
structure.
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Algorithm 2 The leaf compression algorithm; the dif-
ferences from the Algorithm 1. Only Line 14 is substi-
tuted.
14: bc = popcnt (t.N [index].leafvec & ((2ULL ≪ v) - 1));
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Figure 4: The data structure of Poptrie where
k = 2, and the lookup procedure for 0110b.

corresponding leaf index. An example of the lookup proce-
dure using leafvec is illustrated in Figure 4; an 8-bit address
01100111b is searched as follows: (a) It takes the first two
bits (01b) from the address, and then picks a bit correspond-
ing to this index (the second bit from the right). (b) It finds
the base address of the next subsequence of internal nodes
using the base1 member. (c) It counts the number of 1s in
the least significant two bits of the vector member minus
1 (= 1), and finds the next internal node. (d) It takes the
second two bits from the address (10b), and then picks a bit
corresponding to this index (the third bit from the right). The
bit is 0 in vector, so the search switches to find a leaf. (e) It
finds the base address for the corresponding leaf nodes from
base0. (f) It counts the number of 1s in the least significant
three bits of the leafvec minus 1 (= 0), and finally finds the
leaf node.

3.4 Direct Pointing
The depth (height) in Poptrie may grow as large as six in-

ternal node levels in the case of IPv4 address of length 32
bits and the 6-bits chunk length (k = 6). This depth can be
reduced if we allow some increase in memory footprint. As
we will see later in Section 4.1, most prefixes in the realis-
tic datasets are distributed in the range of prefix length from
/11 through /24. This means that the lookup algorithm of
Poptrie needs to traverse at least two internal nodes from its
root to reach a leaf node for most IP addresses. Hence, it
is common to conduct an optimization technique such that
the most significant s bits are just extracted to an array of
length 2s elements that points to the corresponding descen-
dant node or directly to the leaf node. Examples can be seen
in DIR-24-8-BASIC, DXR and SAIL.

With the s variable specifying how many of the most sig-
nificant bits should be used as the direct index. It enables us
to jump directly to the corresponding leaf or internal node,
by accessing the n-th elements in the top-level array, where
n is the value of the most significant s-bits in the given key.
The direct pointing increases the memory footprint by 4×2s
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Figure 5: Direct pointing (k = 6, s = 12).

Algorithm 3 The direct pointing algorithm; the differ-
ences from Algorithm 1. Line 1 and 2 in Algorithm 1
are replaced with the statements below.
1: index = extract (key, 0, t.s);
2: dindex = t.D[index].direct index;
3: if (dindex & (1UL ≪ 31)) then
4: return t.L[dindex & ((1UL ≪ 31) - 1)];
5: end if
6: index = dindex;
7: offset = t.s;

bytes at maximum in our implementation where the size of
each element in the top-level array is 4 bytes.

The modifications to Algorithm 1 are shown in
Algorithm 3. The value of the element in the top-level array
is called “direct index”. If the most significant bit is set in
the direct index, the remaining bits in the direct index point
to the leaf node directly. Otherwise, the direct index points
to the internal node and further search is necessary.

3.5 Incremental Update
Although compilation time of Poptrie from scratch, i.e.,

rebuilding the data structure entirely from the RIB, is short
(less than 70 milliseconds as shown later in Table 2), it is
generally desired to have a way to quickly update the FIB in-
crementally. The incremental update of Poptrie is performed
by replacing only the updated part of the trie.

Blocking the read access to Poptrie using write lock is
not acceptable because it blocks IP forwarding process for a
considerable amount of time. Hence, we opt for a lock-free
approach for the incremental update in Poptrie. In either
way, the data structure must be kept consistent all the time.
The strategy here is to let the IP forwarding process keep re-
ferring to the current (i.e., older) FIB while the construction
of the updated FIB is ongoing. When the update is finished,
the current FIB is switched to the new one, by changing the
pointer or the index of the FIB using an atomic instruction.
Since the FIB lookup is read-only procedure and we assume
the single-threaded update operation, the atomic instruction
can ensure the consistency. The simplicity of Poptrie en-
ables this approach on the various part and level of the data
structure.
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Figure 12: The average lookup rate for real-trace
on REAL-RENET.

ior should diverge, since the second stage of each algorithm
is different while the first stage is similar in SAIL, DXR, and
Poptrie. Hence, we investigate each case per binary radix
depth. Figure 11 shows the CPU cycle distribution for each
binary radix depth. The wick of each candlestick represents
5th/95th percentile, the body represents the first and third
quartile values, and the internal bar represents the median
value. This figure demonstrates a significant difference at
greater binary radix depth; for example, the 95th percentiles
of Poptrie18 are no more than 172 cycles for any binary radix
depth while those of SAIL and DXR exceed 234 cycles at
the binary radix depth of 24 and 25. Overall, Poptrie suc-
ceeded in maintaining the lower number of CPU cycles in
various cases, gaining superior performance. We found the
similar trend also for the dataset REAL-Tier1-B. When the
binary radix depth is smaller than 16, all algorithms kept the
CPU cycles consistently small, less than 50. Interestingly,
the median of D16R is larger than that of the others. As
shown in Figure 10 before, we also see the small difference
in the distributions between D16R and Poptrie16 around 22
cycles. We suspect that this can be attributed to the DXR’s
behavior; the binary search for its range table accesses mem-
ory many times so that the data structure for smaller binary
radix depth are hard to keep in the L2 cache.

4.7 Performance Evaluation with a Real In-
ternet Traffic Trace

Figure 12 shows the average lookup rate for real-trace
on REAL-RENET. Poptrie18 is 1.61 and 1.22 times faster
than D18R and SAIL, respectively. Additionally, we also
confirm that Poptrie18 outperforms both DXR (D16R and
D18R) and SAIL for real-trace on all the other RIB
datasets although real-trace should be a different pattern
from the real traffic on the other RIB datasets.

The lookup rates of Poptrie and DXR for real-trace are
degraded compared to those for random. This is because
a larger number of packets goes to IGP routes that are gen-
erally more specific than BGP routes in real-trace. 32.5%
of the packets in real-trace on REAL-RENET have the

Table 5: The lookup rates of each algorithm in
Mlps for random traffic on synthetic large RIBs.

Algorithm SYN1 SYN1 SYN2 SYN2
-Tier1-A -Tier1-B -Tier1-A -Tier1-B

SAIL 102.86 99.98 N/A N/A
D18R (modified) 115.45 117.48 102.59 104.22
Poptrie18 188.02 187.69 174.42 175.04

binary radix depth more than 18, while for the whole IPv4
address space only 22.1% have the binary radix depth more
than 18. These addresses cannot be looked up in the first
stage of the algorithm of poptrie18 and D18R. Moreover,
21.8% of the packets of real-trace have binary radix depth
more than 24, while only 1.66% of the whole IPv4 address
space have binary radix depth more than 24.

SAIL performs better in the lookup rate for real-trace
than for random. This is because SAIL could take advan-
tage of the CPU cache due to the locality of the destination
IP addresses, i.e., the sequences of packets with the identical
destination IP address.

4.8 Scalability
We measure the performance on the synthetic RIBs (i.e.,

those with ’SYN’ prefix) to evaluate the scalability to future
routing table growth. SAIL cannot compile SYN2-Tier1-A
and SYN2-Tier1-B due to its structural limitation; C16[i] in
SAIL is encoded in the 15 bits of BCN [i], but it exceeds
215 for these datasets. The DXR also exceeds its structural
limitation of the number of ranges that is supported up to
219. However, we can extend it to 220 by absorbing one
bit for the “short” format flag to the address range index.
Thus, we modified DXR and conducted the evaluation. The
structural scalability of Poptrie is discussed in Section 5.

The average lookup rates of each algorithm for the ran-
dom traffic pattern on the synthetic RIBs are summarized
in Table 5. Poptrie18 outperforms SAIL and D18R, and
the lookup rate of Poptrie18 exceeds the 100 GbE wire-rate,
148.8 Mlps, for these RIBs, while DXR slows down to
102.59 Mlps for SYN2-Tier1-A. Thus, Poptrie is scalable
to the routing table growth in lookup performance.

4.9 Update Performance
We also evaluate the performance of updating the

Poptrie18 data structure. The update is first performed to the
radix tree for the RIB maintenance, and then replaces a part
of the trie in Poptrie, as described in Section 3.5. We use four
15 minute update archive files (i.e., an hour in total) of RV-
linx-p52 to evaluate the update performance. This dataset
contains 23,446 route updates (18,141 announced and 5,305
withdrawn) in 7,824 messages.

The average number of replacements for the top-level ar-
ray in direct pointing, the leaf node, and the internal node,

11

Table 1: RIB Datasets; the name, number of prefixes, and number of distinct next hops.
Name # of # of Name # of # of Name # of # of

prefixes nhops prefixes nhops prefixes nhops

RV-linx-p46 † 518,231 308 RV-saopaulo-p12 ‡ 516,536 510 RV-singapore-p3 † 518,620 136
RV-linx-p50 † 512,476 410 RV-saopaulo-p13 ‡ 517,914 504 RV-singapore-p5 † 516,557 129
RV-linx-p52 † 514,590 419 RV-saopaulo-p16 † 521,405 528 RV-sydney-p0 † 520,580 122
RV-linx-p57 † 514,070 142 RV-saopaulo-p18 ‡ 521,874 522 RV-sydney-p1 † 515,809 125
RV-linx-p60 † 508,700 70 RV-saopaulo-p2 ‡ 523,092 530 RV-sydney-p3 † 517,511 115
RV-linx-p61 † 512,476 149 RV-saopaulo-p20 ‡ 523,574 470 RV-sydney-p4 † 519,246 86
RV-nwax-p1 † 519,224 60 RV-saopaulo-p23 ‡ 523,013 517 RV-sydney-p9 † 523,400 127
RV-nwax-p2 † 514,627 46 RV-saopaulo-p25 ‡ 532,637 523 RV-telxatl-p3 ‡ 511,161 56
RV-nwax-p5 † 519,195 49 RV-saopaulo-p26 ‡ 516,408 479 RV-telxatl-p6 ‡ 519,537 42
RV-paixisc-p12 † 519,142 68 RV-saopaulo-p8 ‡ 522,296 477 RV-telxatl-p7 ‡ 513,339 49
RV-paixisc-p14 † 524,168 49 RV-saopaulo-p9 ‡ 515,639 507
REAL-Tier1-A ∗ 531,489 13 SYN1-Tier1-A 764,847 45 SYN2-Tier1-A 885,645 87
REAL-Tier1-B ∗ 524,170 9 SYN1-Tier1-B 756,406 19 SYN2-Tier1-B 876,944 33
REAL-RENET ⋄ 516,100 32

† Snapshot of 2014-12-17 00:00 UTC, ‡ Snapshot of 2014-12-16 23:00 UTC, ∗ Obtained on Jan. 9, 2015, ⋄ Obtained on Jan. 3, 2015.
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Figure 7: The heat map of the binary radix
depth for all 232 IPv4 addresses on REAL-Tier1-
A. x-axis is the matched prefix’s prefix length.
y-axis is the length of checked bits.

to the next hop assignment policies.
It is worth noting that in general, the number of bits

checked in the longest prefix matching is larger than the
prefix length of individual routes. This is due to the other
longer prefixes that are neighboring to the prefix in the ad-
dress space. We call the number of bits (equivalently, the
depth to search in the binary radix tree) that is necessary to
decide the resulting longest matching prefix “binary radix
depth”. The binary radix depth is possibly deeper than the
prefix length as shown in Figure 7. We see a number of cases
where deeper search is required to decide the shorter longest
matching prefix. For example, there are many cases where it
is necessary to search down to the 24th level to decide that
the matching prefix is only /8. This influences the perfor-
mance of lookup technologies shown in the later sections.

4.2 Traffic Patterns
We take the following traffic patterns into consideration

for the lookup performance evaluation: random, sequen-

tial, repeated, and real-trace. The first three are syn-
thetic ones, and the last one is real traffic.

For random traffic pattern, 232 random IP addresses are
generated using xorshift [19]. Each random number is gen-
erated just before the lookup routine to minimize the cache
pollution, rather than preparing an array of random num-
bers in advance like other studies do. The measured av-
erage overhead of the random number generator was 1.22
nanoseconds per generation. Note that we did not exclude
this overhead from the results. For sequential, 232 ad-
dresses from 0.0.0.0 to 255.255.255.255 are queried se-
quentially. Technologies tend to show better performance
for sequential because of the absence of random number
generation, and the higher possibility of cache hit in search-
ing down the same part of the tree. Repeated is similar
to random except that each random number address is re-
peated 16 times (total 16 × 232 lookups).

Real-trace is a real Internet traffic trace, captured on
December 16, 2014 in a research and educational network
for 15 minutes. The trace was captured on a transit link of
the same AS border router that produced the REAL-RENET
dataset. We excluded an IP address that probes the entire
IPv4 address space with a large amount of experimental
ICMP packets4. The packets accounted for 24.4% of the to-
tal IPv4 packets in the trace. The number of IPv4 packets in
this trace (after the filtering) is 97,126,495 with 644,790 dis-
tinct destination IPv4 addresses. In the evaluation, we load
all the destination IP addresses of real-trace into an array
in memory in advance, and issue the lookup queries one by
one in sequence.

4.3 Effect of Extensions in Poptrie
We first evaluate the effectiveness of the extensions and

the design options of Poptrie. They are labeled “basic” (Sec-
tion 3.1), “leafvec” (Section 3.3), and “s” (the parameter
for direct pointing, described in Section 3.4). Using REAL-
Tier1-A, we measured the number of internal nodes (labeled

4USC ANT project: http://www.isi.edu/ant/address/
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Table 1: RIB Datasets; the name, number of prefixes, and number of distinct next hops.
Name # of # of Name # of # of Name # of # of

prefixes nhops prefixes nhops prefixes nhops

RV-linx-p46 † 518,231 308 RV-saopaulo-p12 ‡ 516,536 510 RV-singapore-p3 † 518,620 136
RV-linx-p50 † 512,476 410 RV-saopaulo-p13 ‡ 517,914 504 RV-singapore-p5 † 516,557 129
RV-linx-p52 † 514,590 419 RV-saopaulo-p16 † 521,405 528 RV-sydney-p0 † 520,580 122
RV-linx-p57 † 514,070 142 RV-saopaulo-p18 ‡ 521,874 522 RV-sydney-p1 † 515,809 125
RV-linx-p60 † 508,700 70 RV-saopaulo-p2 ‡ 523,092 530 RV-sydney-p3 † 517,511 115
RV-linx-p61 † 512,476 149 RV-saopaulo-p20 ‡ 523,574 470 RV-sydney-p4 † 519,246 86
RV-nwax-p1 † 519,224 60 RV-saopaulo-p23 ‡ 523,013 517 RV-sydney-p9 † 523,400 127
RV-nwax-p2 † 514,627 46 RV-saopaulo-p25 ‡ 532,637 523 RV-telxatl-p3 ‡ 511,161 56
RV-nwax-p5 † 519,195 49 RV-saopaulo-p26 ‡ 516,408 479 RV-telxatl-p6 ‡ 519,537 42
RV-paixisc-p12 † 519,142 68 RV-saopaulo-p8 ‡ 522,296 477 RV-telxatl-p7 ‡ 513,339 49
RV-paixisc-p14 † 524,168 49 RV-saopaulo-p9 ‡ 515,639 507
REAL-Tier1-A ∗ 531,489 13 SYN1-Tier1-A 764,847 45 SYN2-Tier1-A 885,645 87
REAL-Tier1-B ∗ 524,170 9 SYN1-Tier1-B 756,406 19 SYN2-Tier1-B 876,944 33
REAL-RENET ⋄ 516,100 32

† Snapshot of 2014-12-17 00:00 UTC, ‡ Snapshot of 2014-12-16 23:00 UTC, ∗ Obtained on Jan. 9, 2015, ⋄ Obtained on Jan. 3, 2015.
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Figure 7: The heat map of the binary radix
depth for all 232 IPv4 addresses on REAL-Tier1-
A. x-axis is the matched prefix’s prefix length.
y-axis is the length of checked bits.

to the next hop assignment policies.
It is worth noting that in general, the number of bits

checked in the longest prefix matching is larger than the
prefix length of individual routes. This is due to the other
longer prefixes that are neighboring to the prefix in the ad-
dress space. We call the number of bits (equivalently, the
depth to search in the binary radix tree) that is necessary to
decide the resulting longest matching prefix “binary radix
depth”. The binary radix depth is possibly deeper than the
prefix length as shown in Figure 7. We see a number of cases
where deeper search is required to decide the shorter longest
matching prefix. For example, there are many cases where it
is necessary to search down to the 24th level to decide that
the matching prefix is only /8. This influences the perfor-
mance of lookup technologies shown in the later sections.

4.2 Traffic Patterns
We take the following traffic patterns into consideration

for the lookup performance evaluation: random, sequen-

tial, repeated, and real-trace. The first three are syn-
thetic ones, and the last one is real traffic.

For random traffic pattern, 232 random IP addresses are
generated using xorshift [19]. Each random number is gen-
erated just before the lookup routine to minimize the cache
pollution, rather than preparing an array of random num-
bers in advance like other studies do. The measured av-
erage overhead of the random number generator was 1.22
nanoseconds per generation. Note that we did not exclude
this overhead from the results. For sequential, 232 ad-
dresses from 0.0.0.0 to 255.255.255.255 are queried se-
quentially. Technologies tend to show better performance
for sequential because of the absence of random number
generation, and the higher possibility of cache hit in search-
ing down the same part of the tree. Repeated is similar
to random except that each random number address is re-
peated 16 times (total 16 × 232 lookups).

Real-trace is a real Internet traffic trace, captured on
December 16, 2014 in a research and educational network
for 15 minutes. The trace was captured on a transit link of
the same AS border router that produced the REAL-RENET
dataset. We excluded an IP address that probes the entire
IPv4 address space with a large amount of experimental
ICMP packets4. The packets accounted for 24.4% of the to-
tal IPv4 packets in the trace. The number of IPv4 packets in
this trace (after the filtering) is 97,126,495 with 644,790 dis-
tinct destination IPv4 addresses. In the evaluation, we load
all the destination IP addresses of real-trace into an array
in memory in advance, and issue the lookup queries one by
one in sequence.

4.3 Effect of Extensions in Poptrie
We first evaluate the effectiveness of the extensions and

the design options of Poptrie. They are labeled “basic” (Sec-
tion 3.1), “leafvec” (Section 3.3), and “s” (the parameter
for direct pointing, described in Section 3.4). Using REAL-
Tier1-A, we measured the number of internal nodes (labeled
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Interim	
  Summary	


n  Fast	
  IP	
  rouPng	
  table	
  lookup	
  
p  914	
  Mlps	
  w/	
  4	
  core	
  

u Global	
  Per-­‐1	
  ISP’s	
  full	
  route	
  (531k	
  routes)	
  
u Random	
  traffic	
  

p  175	
  Mlps	
  per	
  core	
  
u SynthePc	
  800k	
  routes	
  
u Random	
  traffic	
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Ongoing	
  Project	

n  Socket	
  API	
  extension	
  for	
  middleboxes/VNF	
  (Virtualized	
  
Network	
  FuncPon)	
  
p  Virtual	
  machine	
  ←	
  ETSI’s	
  approach	
  

u  Network	
  abstracPon:	
  Virtual	
  NIC	
  
–  Pros:	
  Any	
  kinds	
  of	
  OS	
  works	
  
–  Cons:	
  Overhead	
  of	
  virtualizaPon	
  (incl.	
  VMEntry/VMExit)	
  

p  Container	
  
u  Network	
  abstracPon:	
  Virtual	
  NIC	
  

–  Pros:	
  Linux	
  works	
  (when	
  we	
  use	
  Linux	
  Container)	
  
–  Cons:	
  Overhead	
  of	
  virtualized	
  NIC	
  driver	
  

p  Process	
  ß	
  My	
  focus	
  
u  Network	
  abstracPon:	
  Socket	
  API	
  

–  Pros:	
  No	
  overhead	
  (a	
  few	
  scheduler	
  overhead)	
  in	
  my	
  design	
  
–  Cons:	
  Socket	
  API	
  is	
  not	
  good	
  for	
  packet	
  processing	
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Non-­‐TCP/UDP	
  Socket	

n  ExisPng	
  socket	
  /	
  IPPROTO	
  

p  SOCK_RAW	
  
u Privileged	
  socket…	
  

p  SOCK_DGRAM	
  (IPPROTO_UDP)	
  /	
  SOCK_STREAM	
  
(IPPROTO_TCP)	
  

u Basically	
  UDP/TCP	
  (Cannot	
  handle	
  Ethernet,	
  IP)	
  
n  Socket	
  

p  SOCK_DGRAM	
  +	
  IPPROTO_ETHERNET	
  (IPPROTO?)	
  
u Bind	
  a	
  MAC	
  address	
  

p  SOCK_DGRAM	
  +	
  IPPROTO_IP	
  (IPPROTO?)	
  
u Bind	
  an	
  IP	
  address	
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Conclusion	


n  VFSR:	
  Very	
  Fast	
  Soaware	
  Router	
  
p  EssenPal	
  Components	
  

1.  Fast	
  packet	
  forwarding	
  
–  High-­‐rate	
  per	
  core/port	
  for	
  in-­‐order	
  processing	
  

2.  Fast	
  IP	
  rouPng	
  table	
  lookup	
  
–  #	
  of	
  routes:	
  >512k	
  (envisioning	
  >800k)	
  
–  High-­‐rate	
  per	
  core	
  for	
  in-­‐order	
  processing	
  

n  Socket	
  API	
  extension	
  for	
  process-­‐based	
  NFV	
  
p  as	
  ongoing	
  work	
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