@ < acket-based nformation haining ervice()>

Networking Operating System from Scratch
towards High-Performance COTS Network Facilities

Hirochika Asai <panda@jar.jp>
The University of Tokyo
I1J-1l Seminar, Tokyo, Japan
April 9, 2015

Biography

= Hirochika Asai (panda) @

o Professional history

o 2013: Received Ph.D in Information Science and Technology from
the Univestiy of Tokyo
— “Analysis and Management of the Internet based on Data Flow Profiling”

¢ 2013-now: Project Assistant Professor at the University of Tokyo
¢ 2014-now: Board member of WIDE Project

o Research interests

¢ Operating system (networking)
— had been my hobby...

o Distributed system (especially Internet-wide system)

+ Internet traffic and topology analysis

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 2

Trends on Network Functionalities
by Software on COTS hardware

m SDN: Software Defined Network

o Separation of
o Forwarding Plane; by hardware
o Control Plane; by software

s NFV: Network Function Virtualization

o Network function by software with virtualization
technologies (e.g., virtual machine, container,
process)

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

Networking Operating System

= “Operating System” (OS)
o Fundamental system software in charge of

& Resource management (hardware/software)
o Protection, Filesystem, multitasking etc.

= COTS Network Facilities (using generic CPU)
= Networking Operating System
o Inexpensive
o Flexible
o Extensible

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

Departing from Generic OS

User App.

NIC NIC Driver

socket — 1

syscall
CPU e e TCP/IP

Memory [€

Generic OS: Not designed for networking facilities

Fat kernel, many overhead, dirty-slate

[> Clean-slate approach

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

Networking Operating System
from Scratch

m “from scratch”

1. Evaluate the best performance of COTS
hardware

o Bottleneck analysis

2. Design new algorithm/architecture
o Scheduler
¢ Memory management
Protection
o Protocol stack
o Routing table lookup algorithm

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

Towards High-Performance Network
Facilities with COTS hardware

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

Network Facilities with COTS hardware

= Background
o Generic CPU (lA) for packet processing
o PCle NIC for packet forwarding

= Goal: High-performance network facilities w/
software

o Router: 40GbE/100GbE line-rate routing (1M RiB
entries)

o Middlebox: Firewall, Load-balancer, etc.
o Server apps: HTTP, Authentication, Accounting, etc.

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 8

Network Facilities with COTS hardware

= Background
o Generic CPU (lA) for packet processing
o PCle NIC for packet forwarding

= Goal: High-performance network facilities w/
software

o Router: 40GbE/100GbE line-rate routing (1M RiB
entries)

o Middlebox: Firewall, Load-balancer, etc.
o Server apps: HTTP, Authentication, Accounting, etc.

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 9

VFSR: Very Fast Software Router

= Essential Components

1. Fast packet forwarding
& High-rate per core/port for in-order processing

2. Fast IP routing table lookup
o # of routes: >512k (envisioning >800k)
o High-rate per core for in-order processing

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 10

Key Numerical Values of “fast”:
Packet Rate for 10/40/100GbE

s Ethernet

o Minimum frame length: 64-Byte
(=Maximum frame rate)
o 1GbE: 1.488Mpps
= 672 ns/packet

o 10GbE: 14.88Mpps
= 67.2 ns/packet

¢ 40GbE: 59.52Mpps
= 16.8 ns/packet

¢ 100GbE: 148.8Mpps
= 6.72 ns/packet

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

11

VFSR: Very Fast Software Router

= Essential Components

1. Fast packet forwarding
o High-rate per core/port for in-order processing

2. Fast IP routing table lookup
o # of routes: >512k (envisioning >800k)
o High-rate per core for in-order processing

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 12

Myths on Packet Forwarding

= Bottlenecks in packet forwarding
o CPU is slow.

o Memory copy is so heavy.

o Interrupts incur excessive overheads.

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

13

Myths on Packet Forwarding

= Bottlenecks in packet forwarding

o CPU is slow.

o Yes, for packet processing, but forwarding requires only
a set of simple instructions
— e.g.,, 0.3 ns/CPU cycle @ 3.3GHz CPU

o Memory copy is so heavy.

o Interrupts incur excessive overheads.

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 14

Myths on Packet Forwarding

= Bottlenecks in packet forwarding

o CPU is slow.

o Yes, for packet processing, but forwarding requires only
a set of simple instructions
— e.g.,, 0.3 ns/CPU cycle @ 3.3GHz CPU

o Memory copy is so heavy.

o At least, throughput is enough.
— e.g., DDR3-1866 Dual Channel: 29.867GB/s (238.933Gbps)

o Interrupts incur excessive overheads.

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 15

Myths on Packet Forwarding

= Bottlenecks in packet forwarding

o CPU is slow.

o Yes, for packet processing, but forwarding requires only
a set of simple instructions
— e.g.,, 0.3 ns/CPU cycle @ 3.3GHz CPU

o Memory copy is so heavy.

o At least, throughput is enough.
— e.g., DDR3-1866 Dual Channel: 29.867GB/s (238.933Gbps)

o Interrupts incur excessive overheads.

o Not excessive, but non-negligible for 100 GbE
— Discuss this later

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 16

Real Bottleneck on Packet Forwarding

s PCle device register access
= Memory Mapped |/0 (MMIO)

— No cache
¢ ~250ns/access [Miller et al. ACM ANCS ’'09]

o Read
& 1529.17 cycles / read
¢ 392.1 ns / read

o Write

¢ 282.621 cycles / write
& 72.47 ns [write

>¢Measure CPU cycles to access to the same register
1 million times by Performance Monitoring Counter (PMC)

CPU: Intel Core i7 4770K
Memory: Corsair DDR3-1866 8GB x4
NIC: Intel X520-DA2

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 17

Review: Generic NIC Architecture

Descriptors Buffer

Ring buffer

N

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

18

Review: Generic NIC Architecture

Packet reception

Descriptors

Buffer

Ring buffer (3) head

NESS

(5) tail

(2)

1.
2.

3.
4.

5.

NIC receives a packet

NIC transfer the packet data to
a buffer in RAM via DMA

NIC proceeds the head pointer
Software processes the packet
Software proceeds the tail
pointer to release the packet

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 19

Review: Generic NIC Architecture

Ring buffer (2) tail

N

(5) head

April 9th, 2015

L4

Packet transmission

Descriptors Buffer 1. Software writes a packet to a

buffer in RAM

2. Software proceeds the tail
pointer to commit the packet

3. NICtransfer the packet data
from the buffer in RAM via
DMA

4. NIC transmit the packet

5. NIC proceeds the head pointer
to notify the packet is

(1) transmitted
H. Asai, "Networking Operating System from Scratch" 20

Review: Generic NIC Architecture

Packet reception

Descriptors

Buffer

Ring buffer (3) head

NESS

(5) tail

(2)

1.
2.

3.
4.
5.

NIC receives a packet

NIC transfer the packet data to
a buffer in RAM via DMA

NIC proceeds the head pointer
Software processes the packet
Software proceeds the tail
pointer to release the packet

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 21

Review: Generic NIC Architecture

Ring buffer (2) tail

N

(5) head

April 9th, 2015

L4

Packet transmission

Descriptors Buffer 1. Software writes a packet to a

buffer in RAM

2. Software proceeds the tail
pointer to commit the packet

3. NICtransfer the packet data
from the buffer in RAM via
DMA

4. NIC transmit the packet

5. NIC proceeds the head pointer
to notify the packet is

(1) transmitted
H. Asai, "Networking Operating System from Scratch" 22

Polling & Bulk Processing
(Transmission, Intel® X520)

txg_tail = 0; N
for (;;) { ;[392.1ns]
txg_head = read_txg_head();
/* Available Tx queue length */
txg_len = txqg_sz
- (txg_sz - txg_head + txg_tail) % txg_sz;
/* Check the available Tx queue length Note: Can be }

1f (txg_len < n) continue;

for (1 =0; 1 <n; 1++) {
// Set packet to the ring buffer to txg_tail
txg_ring[txqg_tail].pkt = pkt_to_transmit;
txg_tail = (txg_tail + 1) % txqg_sz

optimized...

¥

/* Commit */ uéﬁ{ ~7Z47n5]
write_txg_tail(txqg_tail);

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 23

Tx Performance by bulk size
(Intel® X520)

16 I
Frame 64B —— § § 1
96B | ‘
14 B 1288 T ""
192B - f | |
- 2568 e M
12 coeb 14.88Mpps
512B -- -e-- - f f 1 §
10 |

ate [Mpps]
2
[
N

Packet r
»

4

[~250ns/packet

[~500ns/packet 0 1 5 3 4 5 6 v 8
Bulk transfer size [packets] =n

Note: Also confirmed 59.52 Mpps Tx (2 Intel® X520-DA2) @ 1 core from Intel® Core i7-4770K

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 24

Intel® XL710’s Operation

Transmission Reception

Host

D>
>
>
>
>
>

PPl o

—
»

(1) {(2)

(1)

€ == = e e e e e

NIC (PCle)

(1) Write the tail pointer (MMIO write) (1) Transfer the packets via DMA with status
(2) Transfer the packets via DMA (2) Write the tail pointer (MMIO write)
(3) Write-back the transfer status

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 25

Polling & Bulk Processing
(Transmission, Intel® XL710)

txg_tail = 0;
for C ;;) {
completed = check_wb_status(txqg_tail, n);
/* Check the transmission is completed */
1f (!completed) continue;
for (1 =0; 1 <n; 1++) {
// Set packet to the ring buffer to Note: Can be
txg_ring[txqg_tail].pkt = pkt_to_trans optimized...
txg_tail = (txg_tail + 1) % txg_sz

¥

/* Commit */ 2 PCle MMIO]
write_txg_tail(txqg_tail);

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 26

Intel® XL710’s performance

Mpps

Bulk size

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

27

Throughput [Gbps]

—_
o

N WA~ 01O N 00 ©

Same Strategy for Forwarding
(Routmg for 1 route)

:::::

| | | My i:mpleme:ntation —
W S e 5 Linux ---%---
: : 3 3 Lir|1e rate -

600 800 1000 1200 1400

Frame size [byte]

0 200 400

Transmitter (pix)

April 9th, 2015

H. Asai, "Networking Operating System from Scratch"

Bulk polling & transmission
(dynamic bulk size = received queue length)

1 route
TTL and checksum calculation
are done by CPU

1600

Router (pix)

untag

TX_)

untag RX

Hardware switch untag

(interface counter for evaluation)

28

Latency measurement

s Experimental setup

O Tester

o Spirent Communications Spirent TestCenter
— Chassis: SPT-N4U-110
— Module: CV-10G-S8

o Supported by RS R FZT 2 =%k during Interop
Tokyo 2014

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 29

Low Latency

0.001Mpps loss

1000 (
\

(need investigation...)

— 100
(7,]
=,
g —avg
] .
8 ==min

10

max
ﬂ
1 | | | | | | | | | |

1 2 3 4 5 6 7 8 9 10
Test traffic (64-byte frame) [Gbps]

Low latency (~10us) for 90% of line-rate traffic

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 30

Revisiting the Overhead of Interrupts
for Faster Packet Processing & I/O

pushqg
pushq
pushqg
pushq
pushq
pushqg
pushq
pushqg
pushq
pushq
pushq
pushq
pushqg
pushq
pushq
call

%rax
%rbx
% c X
%rdx
%rdi
%rsi
%rbp
%r8
%r9
%r10
%rl1l
%rl2
%ri13
%r14
%r15
_kintr

April 9th, 2015

Push 15 general purpose registers onto the stack,

popq ZA'”15 pop 15 general purpose registers from the stack,
Eggq ;::ig' and then return to the restore point
q 0

. %12 while popping the original stack pointer etc.
popq %rll
popa %rl@ Latency Throughput
popg %r9 PUSH (@0F_2H) 1.5 1
popq %r8
pOpQ %rbp POP (@OF _2H) 1.5 1
popg Zfrz} CLI (@06_2A/2D) 5 2

0 rdi
EOEZ VZrdx Referred from Intel® 64 and 1A-32
popg %rcx Architectures Optimization Reference Manual
popq %rbx
POPE %rax 30 CPU cycles for push/pop instructions
ire

| = 10 ns @3GHz CPU
H. Asai, "Networking Operating System from Scratch" 31

Interim Summary

m Faster packet forwarding
o Reduce slow PCle MMIO
=» Key: Bulk processing

¢ Read
— 392.1 ns / read

¢ Write
— 72.47 ns [write

o Avoid using interrupt handlers for 40GbE/100GbE
=>» Key: Polling, Tickless

o 10 ns to save and restore CPU’s registers

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 32

VFSR: Very Fast Software Router

= Essential Components
1. Fast packet forwarding

High-rate per core/port for in-order processing

2. Fast IP routing table lookup
o # of routes: >512k (envisioning >800k)

o High-rate per core for in-order processing

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 33

Poptrie: A Compressed Trie with Population Count
for Fast and Scalable Software IP Routing Table Lookup

Hirochika Asai (Univ. of Tokyo)
Yasuhiro Ohara (NTT Communications)

Fundamental Algorithm
for Longest Prefix Match

Binary Radix Tree
Problem with binary radix tree

0.0.0.0/0 « Depth up to 32 (for IPv4)
1 * Too many pointers
128.0.0.0/1 = Slow

0.0.0.0/2 64.0.0.0/2

64.0.0.0/3

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 35

Principle Ideas towards Faster |IP
Routing Table Lookup Algorithm

m Reduce the number of instruction,
especially memory access

o 1 or a few cycles for most of bitwise instructions

o Memory access latency (in Intel Core i7-4770K)

o L1 cache: 4-5 cycles

o L2 cache: 12 cycles

o L3 cache: 27.85 cycles
¢ DRAM: ~65 ns

s Reduce memory footprint

o Maximize CPU cache efficiency

o L1/L2/L3 cache size in Intel Core i7-4770K
— 64 KiB, 256 KiB, 8 MiB

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

36

Reduce the number of instructions:
Starting from 27k-ary radix tree

To reduce the depth of the tree (i.e., # of memory access)

Key IP Address value FrT
MSB 00b— 0123 Internal node
X 01b— (descendant array)
chunk | X 10b™
k=2) [x]| 11—
X
X [ﬁ
X

I: child node is an internal node
|:|: child node is a leaf node

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 37

Reduce memory footprint: Pointer
Compression w/ Population Count

[Index: # of 1’s bits in the

least significant N bits

Bit-vector + two pointers — internal node
vector base0 base1

R

Key IP Address value rrri

0123
MSB— 00b Internal node 0jo0j1]o 3127 2498

x| o1 bﬂ (descendant array)
chunk | X| 10b .:I ~\/~
k=2) Tx]| 11b Four pointers \

X ~

[| N /éild node \

X 4

— N[2498]

: 7 7 7

L[3127] L[3128] L[3129]

Index: # of O’s bits in the
least significant N bits

Which k? 64-bit CPU =2 k=6 (so that vector is in 26 = 64 bits)

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 38

Further Compression: Leaf Vector to
Remove Redundant Leaf Nodes

One of the problem with the basic data structure
- Redundant leaf nodes for prefixes that do not match k-bit boundary
- e.g., /1(/7, etc. as well) may create 32 redundant leaf nodes when k=6

internal node =
irrelevant Hole punching
Ieé‘vec vecto basel base1
olofo]1|[ofoft|of| 3127 2498
/ //
N / child node
N[2498] = === ———— — -
L 7 4----}--?--1_---7---{
L[3127] L[3128] L[3129]

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 39

Visualized Lookup Algorithm Example

For the destination address 0110b

Internal nodes —
@)) \ﬁ)

leaf vec vector ~baseT/0 b .
oo11] | | [ECHeoie] | Mool []
N[O] | N[8] ! N[9] A
P T SR O g
#0 #1 #2 e
L[O] L[16] |[L[17] |L[18] L[128] i

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 40

Direct Pointing

root Direct bointi
internal node Irect pointing

6bits { top-level array

V WVVW V
FIB table FIB table
poptrie (s=0) poptrie (s=12)

(a) Without Direct Pointing. (b) Direct Pointing,.

Lookup s bits at the first stage (like other algorithms)

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 41

Evaluation for Random Traffic

REAL-Tierl-A: Global Tier-1’s BGP Router
REAL-Tier1-B: Domestic ISP’s BGP Router

1 [REAL TlertA

| -lieri-A ——————
900 1= REAL-Tier1-B «----- g
800 . S ““‘ """" N

700
600
500
400
300
200 1 3 3 3

100 e .

Lookup rate [MIps]

of threads

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

Performance Evaluation for Real

Lookup rate [MIps]

April 9th, 2015

300

250

200

150

100

50

Traffic (WIDE Transit)

SAIL

H. Asai,

D16R Poptrie;s D18R Poptrie;g
Data Structure and Algorithm

"Networking Operating System from Scratch"

43

CPU cycles per lookup

350
300
250
200
150
100
50
0

April 9th, 2015

Detailed Analysis on CPU Cycles
per Lookup for Random Traffic

CPU cycles per lookup

350

300 -
250 -
200
150
100

2 4 6 8 101214161820222426
Binary radix depth

350 I L L L B B A
D16R — P
- @ B00 [idiedddd bt bbb :
3
x
- S 250 | .
- 8 200 B
3
- 2 150 | -
Q>)‘ : [
- S o100f AT A
‘ %) 50 L
Loy U MMMW
2 4 6 8 1012 14 16 18 20 22 24 26 2468101214161820222426
Binary radix depth Binary radix depth
350 I A I 350

250
200
150

100 |-

CPU cycles per lookup

300 fi

> ‘q‘;gnuuqaaagal |

300

250
200
150
100

50

CPU cycles per lookup

0
2 4 6 8 1012 14 16 1820222426
Binary radix depth

H. Asai, "Networking Operating System from Scratch"

0
2 4 6 8 101214161820222426
Binary radix depth

44

Structural Scalability

Lookup performance for random traffic [Mlps]

Algorithm SYN1 SYNI1 SYN2 SYN2

-Tierl-A -Tierl-B -Tierl-A -Tierl-B
SAIL 102.86 99.98 N/A N/A
D18R. (modified) 115.45 117.48 102.59 104.22
Poptrie;s 188.02 187.69 174.42 175.04

RIB dataset (synthetic RIB dataset)

Name # of # of Name # of # of

prefixes nhops prefixes nhops
SYN1-Tierl-A 764,847 45 SYN2-Tierl-A 885,645 87
SYN1-Tierl-B 756,406 19 SYN2-Tierl-B 876,944 33

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 45

Interim Summary

m Fast IP routing table lookup

o 914 Mlps w/ 4 core
o Global tier-1 ISP’s full route (531k routes)
¢ Random traffic

o 175 Mlps per core

o Synthetic 800k routes
¢ Random traffic

April 9th, 2015

H. Asai, "Networking Operating System from Scratch"

46

Ongoing Project

m Socket API extension for middleboxes/VNF (Virtualized
Network Function)

o Virtual machine < ETSI's approach

¢ Network abstraction: Virtual NIC
— Pros: Any kinds of OS works
— Cons: Overhead of virtualization (incl. VMEntry/VMExit)

o Container

¢ Network abstraction: Virtual NIC
— Pros: Linux works (when we use Linux Container)
— Cons: Overhead of virtualized NIC driver

o Process < My focus

o Network abstraction: Socket API
— Pros: No overhead (a few scheduler overhead) in my design
— Cons: Socket APl is not good for packet processing

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 47

Non-TCP/UDP Socket

= Existing socket / IPPROTO
o SOCK_RAW

o Privileged socket...

o SOCK_DGRAM (IPPROTO UDP) / SOCK_STREAM
(IPPROTO_TCP)

& Basically UDP/TCP (Cannot handle Ethernet, IP)
= Socket

o SOCK_DGRAM + IPPROTO_ETHERNET (IPPROTOQO?)
¢ Bind a MAC address

o SOCK_DGRAM + IPPROTO_IP (IPPROTO?)

¢ Bind an IP address

April 9th, 2015 H. Asai, "Networking Operating System from Scratch" 48

Conclusion

= VFSR: Very Fast Software Router

o Essential Components

1. Fast packet forwarding
— High-rate per core/port for in-order processing

2. Fast IP routing table lookup
— # of routes: >512k (envisioning >800k)
— High-rate per core for in-order processing

m Socket APl extension for process-based NFV

O as ongoing work

April 9th, 2015 H. Asai, "Networking Operating System from Scratch"

49

