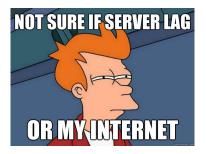
An Empirical Mixture Model for Large-Scale RTT Measurements

Romain Fontugne^{1,2} Johan Mazel^{1,2} Kensuke Fukuda^{1,3}

¹National Institute of Informatics ²JFLI ³Sokendai

June 9, 2015

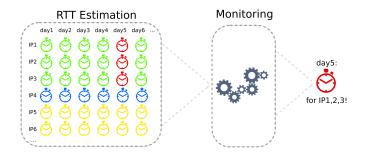

Evaluation

Conclusions

Introduction

RTT: Round Trip Time

- Time to send a packet and receive its acknowledgment
- Key indicator of network conditions
- Important for server selection, overlay network, geolocation...


Evaluation

Conclusions

Motivations

Monitor Internet-wide delays over time

- Measure millions of hosts RTTs
- Assess network performance at large-scale
- Report significant RTT fluctuations

Evaluation

Conclusions

RTT Estimation

RTT from passive measurements

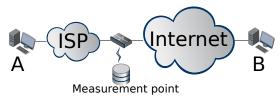
- Measure traffic at backbone network
- RTT estimation from TCP traffic

Advantages

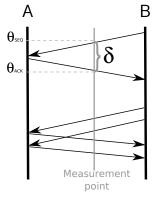
- Non-Intrusive (Ping the entire IP space)
- Monitor RTT experienced by Internet users

Evaluation

Conclusions

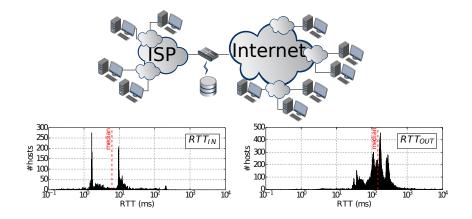

RTT Estimation in the network

Evaluation


Conclusions

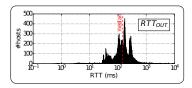
RTT Estimation in the network

Based on Karn's algorithm


- For a certain host A
- Compute delay samples $\delta = \theta_{ACK} \theta_{SEQ}$
- Ignore retransmitted packets

Problem: Understanding RTT from numerous hosts?

Problem: Understanding RTT from numerous hosts?

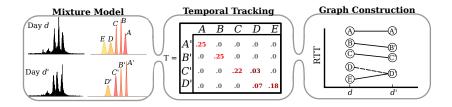


- Multimodal distributions
- Median value is misleading! (Don't use it!)

Evaluation

Conclusions

Monitoring RTT


Find and monitor typical RTTs

- Identify usual RTTs experienced by Internet hosts
- Characterize, and monitor spatial and temporal dynamics of RTTs
- Detect abnormal RTTs fluctuations for both host population or specific hosts

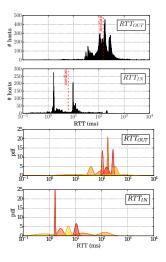
Evaluation

Conclusions

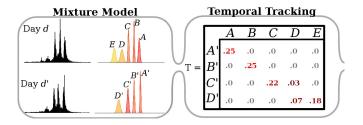
Proposed Model

- 1. Uncover the daily RTT distributions using a mixture model
- 2. Link RTT distributions from similar sub-population of IPs across time
- 3. Formalize RTTs time evolution in a graph for further systematical analysis

Evaluation

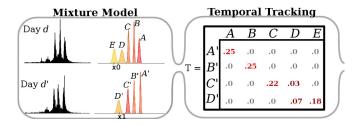

Conclusions

Mixture Model


Identify RTT sub-populations:

- Unknown number of mixed components
- Dirichlet process mixture model
- log-normal distribution

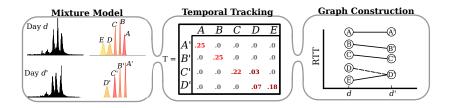
 \rightarrow Obtain the mean and std. deviation of typical RTTs (μ,σ)


Temporal Tracking

Number of components from d and d' might differ

- IPs from E moved to D'?
- or they are not active in day d'?

Temporal Tracking (cont.)



Connect distributions from different days:

- · See components as probability density functions
- Compute probability of IPs to fall in A and A', A and B',

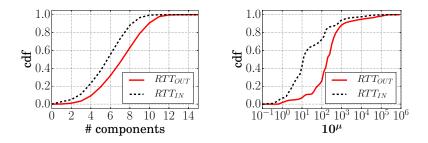
 \rightarrow Transition matrix from day d to day d'

Graph Construction

Graph from transition matrix

- 1. Nodes: identified modes / typical RTTs for one day
- 2. Edges: relate modes with similar IPs

Evaluation

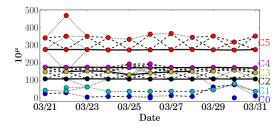

Dataset: MAWI Archive

- transit link between the WIDE network (ASN2500) and the Internet
- 15 minutes of traffic everyday from Jan. 2001 to Mar. 2014
- 4678 traces (pcap files)
- RTT estimates from 12 millions unique IP addresses
- Separate RTTs to hosts inside the WIDE network (RTT_{IN}) and outside (RTT_{OUT})

Evaluation

Conclusions

Longitudinal Study

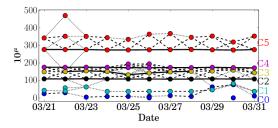

(a) CDF of the number of identified modes per day.

(b) CDF of 10^{μ} , the modeled RTT of the identified modes (milliseconds).

 $\rightarrow RTT_{OUT}$ contains more components and higher RTTs $\rightarrow RTT_{IN} = 500 ms (10^{2.7})$ satellite link!

Geolocation

Example: RTT_{OUT} from 2014/03/21 to 2014/03/31


 \rightarrow Cluster modes using community mining (Louvain algorithm)

Evaluation

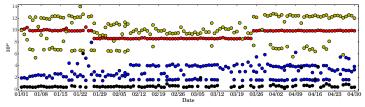
Conclusions

Geolocation

Example: RTT_{OUT} from 2014/03/21 to 2014/03/31

 \rightarrow Cluster modes using community mining (Louvain algorithm)

	JP	KR	US	CA	EU	CN	RTT
C5			8%		73%	3%	289 ms
C4			87%	4%			175 ms
C3			73%			11%	149 ms
C2			91%				108 ms
C1		97%					44 ms
C0	98%						19 ms

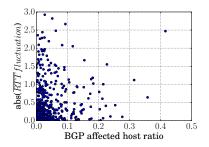

Table: Hosts geolocation breakdown using Maxmind Geo-IP

Evaluation

Conclusions

Application 1

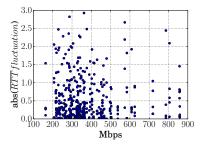
Look at communities RTT fluctuations:



- RTT fluctuation = avg. RTT day2 avg. RTT day1 (normalized)
 - pprox 0 means the RTTs are stable
 - if deviate from 0 means RTTs of numerous hosts have changed

 $\rightarrow \overline{RTT}$ fluctuation depicts important RTT changes

RTT fluctuations & BGP updates?

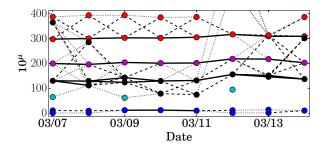

- BGP Route Information Base (RIB) from Route Views Project
- Ratio of IPs affected by a BGP route vs. \overline{RTT} fluctuations:

 \rightarrow 66% of the BGP updates affecting > 15% clustered IPs exhibit > 0.15 \overline{RTT} fluctuations (similar to Rimondini et al. PAM'14)

\overline{RTT} fluctuations & network congestion?

- Assuming MAWI throughput is proportional to network congestion
- Compare MAWI throughput and \overline{RTT} fluctuations

 \rightarrow higher \overline{RTT} fluctuations when average throughput is higher than 500 Mbps

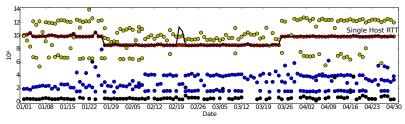

Introduction

Mixture Model

Evaluation

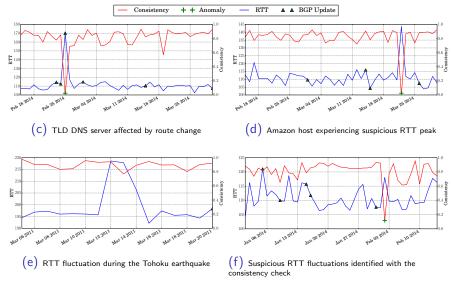
Conclusions

\overline{RTT} fluctuations: Example Tohoku earthquake (2011/03/07-2011/03/14)


March 12 2011:

- 20ms RTT increase for all hosts outside of Japan
- RTT inside Japan are unchanged

 \rightarrow Impact of damaged trans-Pacific links and intra-AS route change


Application 2

Consistency check

- Verify if a host is consistent with "its" cluster
- Compare the host RTTs with the identified RTT distributions
- Take into account the RTT variance
- Consistency score:
 - pprox 1 means the host behaves like other hosts
 - pprox 0 means the host deviates from other hosts

Consistency check: Examples

 \rightarrow Proposed model gives more insights than simple RTT analysis

Discussions

Implementation

- Low memory usage and computational complexity
- Suitable to sampled traffic
- Accuracy decreases with distance (*Tokyo* \neq *Osaka*, *FR* = *UK*)

Empirical Approach

- Monitor RTT experienced by Internet users
- Cluster IP based on RTT values (not AS)

Possible applications

- DDoS detection?
- BGP hijack?
- $\bullet \ \to \mathsf{Difficult} \ \mathsf{to} \ \mathsf{evaluate}$

Conclusions

Proposed mixture model

- Coarse view of numerous hosts RTTs
- Track typical RTTs time evolution
- Formalize RTT dynamics in a graph

Applications

- Provides insights into the delays experienced by a large population of IP hosts
- Reference to find hosts deviating from their population

R. Fontugne, J. Mazel, K. Fukuda. "An Empirical Mixture Model for Large-Scale RTT Measurements", INFOCOM 2015