
Unbounded Spigot Algorithms for �

Jeremy Gibbons

IIJ, March 2017

Unbounded Spigot Algorithms for Pi 2

1. Spigot algorithms for �

Rabinowitz & Wagon’s algorithm, obfuscated by Winter & Flammenkamp:

a�52514�;b; c � 52514;d; e; f � 1e4;g;h;

main��f
for�; b � c �� 14; h � printf �"%04d"; e� d = f ��

for�e � d %� f ; g��� b � 2; d =� g�
d � d � b � f � �h ? a�b� : f = 5�;a�b� � d %�� g;

g

based on the expansion

� �
1X

i�0

�i!�22i�1

�2i � 1�!
� 2� 1

3

�
2� 2

5

�
2� 3

7

�
� � �

�
2� i

2i � 1

�
� � �

�����
A spigot algorithm: digits ‘drip’ out, one by one (or here, four by four),
with limited intermediate storage.

Unbounded Spigot Algorithms for Pi 3

2. Finite versus infinite sequences

R&W’s algorithm inherently bounded, committing initially to length:

“One cannot simply [keep going], because memory allocations
must be made in advance”.

W&F’s program operates on a finite array, generating just 15,000 digits.

This program

pi � g �1;0;1;1;3;3� where

g �q; r; t;k;n; l� �
if 4� q � r � t < n� t

then n : g �10� q;10� �r � n� t�; t;k;
div �10� �3� q � r�� t � 10� n; l�

else g �q � k; �2� q � r�� l; t � l;k � 1;
div �q � �7� k � 2�� r � l� �t � l�; l � 2�

is based on infinite sequences, and generates digits without bound.

Unbounded Spigot Algorithms for Pi 4

3. Number representations

Familiar representations use a fixed-radix base; consider

� � 3� 1
10

�
1� 1

10

�
4� 1

10

�
1� 1

10

�
5� � � �

����
as number �3; 1;4;1;5; : : :� in fixed-radix base F10 �

� 1
10 ;

1
10 ;

1
10 ; : : :

�
.

Similarly, think of expansion

� � 2� 1
3

�
2� 2

5

�
2� 3

7

�
� � �

�
2� i

2i � 1

�
� � �

�����
as number �2; 2;2;2; : : :� in mixed-radix base B �

�1
3 ;

2
5 ;

3
7 ; : : :

�
.

Computing the digits of � is then radix conversion from B to F10.

Regular representations: digit i after the point is

• in �0;9�, and ‘maximal fraction’ is �0; 9;9;9 : : :� � 1, for F10;

• in �0;2i�, and maximal fraction is �0; 2;4;6 : : :� � 2, for B.

Unbounded Spigot Algorithms for Pi 5

4. Converting to fixed-radix base

Digits in base F10 of number x (assume 0 � x < 10):

• first digit d � bxc

• remainder is x � d

• remaining digits obtained from 10� �x � d�

In Haskell:

decimal x � d : decimal �10� �x � fromIntegral d��
where d � floor x

We have to do this for number x represented in B.

Unbounded Spigot Algorithms for Pi 6

5. Operations in mixed-radix base

For number x � �a0; a1;a2;a3 : : :� in B,

• bxc is either a0 or a0 � 1, depending on whether remainder
�0; a1;a2;a3 : : :� is in �0;1� or �1;2�

• (remainder cannot be 2, for irrational x)

• so need to buffer any 9s produced, in case of carries

• multiplying x by 10 can be achieved by multiplying each ai by 10

• this typically yields an irregular representation

• for finite number, regularize from right to left, carrying leftwards

For infinite number, regularization needs to be left to right.
This can be done by streaming.

Unbounded Spigot Algorithms for Pi 7

6. Streaming: the idea

Consider conversion of infinite representations from base Fm to Fn.

Key idea:

first few input digits determine first few output digits.

So consume first few, produce first few, continue with remainder.

Maintain additional information, representing the function from the
remaining inputs to the remaining outputs: with input

x � 1
m

�
a0 �

1
m

�
a1 � � � �

��
after a0;a1; : : : ;ai�1 have been consumed and b0;b1; : : : ;bj�1 produced,

x � 1
n

�
b0 �

1
n

�
b1 � � � � �

1
n

�
bj�1 � v �

�
u� 1

m

�
ai �

1
m

�
ai�1 � � � �

������
Represent that function by the pair �u;v� of rationals.
Initially, i � j � 0 and �u;v� � �0;1�.
Commit when v � �u� 0� and v � �u� 1� have same first digit in base n.

Unbounded Spigot Algorithms for Pi 8

7. Streaming: an example

For example, 1=e � 0:100221 : : : in F3, and 0:240 : : : in F7.

First three input digits 100 determine first output digit 2:

0:27 < 0:1003 < 0:1013 < 0:257

So consume first three input digits, produce first output digit; continue
with remainder.

First few states of the conversion:

ai 1 0 0 2 2 1

u;v 0
1 ;

1
1

1
1 ;

1
3

3
1 ;

1
9

9
1 ;

1
27

9
7 ;

7
27

41
7 ;

7
81

137
7 ;

7
243

418
7 ;

7
729

10
49 ;

49
729

bj 2 4

First safe state is �u;v� �
�9

1 ;
1

27

�
, the first for which we have:

b7� v � uc � b7� 1
27 �

9
1c � 2 � b7� 1

27 � �
9
1 � 1�c � b7� v � �u� 1�c

Unbounded Spigot Algorithms for Pi 9

8. Streaming: the pattern

stream :: �b!Bool�! �b!c�! �b!b�! �b!a!b�! b ! �a�! �c�
stream safe next prod cons z �x : xs�
� if safe z then y : stream safe next prod cons �prod z� �x : xs�

else stream safe next prod cons �cons z x� xs
where y � next z

In particular,

convert �m;n� xs � stream safe next prod cons init xs where

�m0;n0� � �fromInteger m; fromInteger n�
init � �0 % 1;1 % 1�
next �u;v� � floor �u� v � n0�
safe �u;v� � �next �u;v� �� floor ��u� 1�� v � n0��
prod �u;v� � �u� fromInteger �next �u;v�� = �v � n0�;v � n0�
cons �u;v� x � �fromInteger x � u�m0;v =m0�

Unbounded Spigot Algorithms for Pi 10

9. Back to �

Can use streaming to regularize an infinite representation.
But there is a more direct approach to computing the digits of �.

� � 2� 1
3

�
2� 2

5

�
2� 3

7

�
� � �

�
2� i

2i�1

�
� � �

�����
�

�
2� 1

3 �
��

2� 2
5 �

��
2� 3

7 �
�
� � �

�
2� i

2i�1 �
�
� � �

—composition of infinite series of linear fractional transformations
�q

s
r
t

�
.

• fixpoint of
�
2� 1

3�
�

is 3, fixpoint of
�
2� 1

2�
�

is 4

• so each LFT maps interval �3;4� onto a subinterval of itself

• each LFT shrinks by at least a factor of 2

• so compositions of such LFTs converge to a point in �3;4�.

Finding that point is another change of representation,
from infinite sequences of LFTs to infinite sequences of decimal digits.

Unbounded Spigot Algorithms for Pi 11

10. Streaming �

• each input LFT is a 2-by-2 matrix of integers��1
0

6
3

�
;
�2

0
10
5

�
;
�3

0
14
7

�
; : : :

�
• state is another LFT z

• initial state is identity LFT,
�1

0
0
1

�
• z is safe if image under z of �3;4� all has same integer part, n�q

s
r
t

�
� �3;4� �

�3q�r
3s�t ;

4q�r
4s�t

�
• then produce digit n, and multiply state by

�10
0
�10n

1

�
, inverse of the

LFT x , n� x
10

• otherwise consume next LFT, by matrix multiplication

Unbounded Spigot Algorithms for Pi 12

11. Program for �

pi � stream safe next prod cons init lfts where

init � unit

lfts � ��k;4� k � 2;0;2� k � 1� j k �1 : :��
next z � floor �extr z 3�
safe z � �next z �� floor �extr z 4��
prod z � comp �10;�10� next z;0;1� z

cons z z0 � comp z z0

where comp is matrix multiplication, and extr extracts the LFT from a
matrix

�q
s

r
t

�
, taking x to �q � x � r�=�s � x � t�.

Obfuscated program obtained from this by inlining definitions,
and observing that invariant s � 0 holds in all our LFTs

�q
s

r
t

�
.

Unbounded Spigot Algorithms for Pi 13

12. Reasoning about stream

For finite sequences, express change of representation by abstraction,
consuming one representation:

foldl :: �b ! a ! b�! b ! �a�! b
foldl h z �x : xs� � foldl h �h z x� xs
foldl h z � � � z

followed by reification, producing the other:

unfoldr :: �b ! Bool�! �b ! c�! �b ! b�! b ! �c�
unfoldr p f g z � if p z then f z : unfoldr p f g �g z� else � �

and convert p f g h z xs � unfoldr p f g �foldl h z xs�.

Sometimes this process can be streamed: if state z satisfies

9y � 8xs � convert p f g h z xs � y : : : :

then it is safe to produce y from z before consuming any more of xs.

Unbounded Spigot Algorithms for Pi 14

13. Arithmetic coding

Data compression, of a text to a bit sequence:

• distribute alphabet across unit interval

• narrow unit interval, character by character

• output shortest binary fraction in final interval

For example, with a ,
�
0; 1

2

�
, b ,

�1
2 ;

2
3

�
, c ,

�2
3 ;1

�
0 1

2
2
3 1

a b c

and text abacab:�
0;1

� a�!
�
0; 1

2

� b�!
�1

4 ;
1
3

� a�!
�1

4 ;
7

24

� c�!
� 5

18 ;
7

24

� a�!
� 5

18 ;
41

144

� b�!
� 9

32 ;
61

216

�
and

� 9
32 ;

61
216

�
contains 0:01001 and no shorter binary fraction.

For efficiency, we wish to stream the output.
Lecturing on arithmetic coding led us to the streaming abstraction.

Unbounded Spigot Algorithms for Pi 15

14. Further reading

• “A Spigot Algorithm for the Digits of �”, Stanley Rabinowitz and
Stan Wagon, American Mathematical Monthly, 102:195–203, 1995

• “Unbounded Spigot Algorithms for the Digits of �”, Jeremy Gibbons,
American Mathematical Monthly, 113:318–328, 2006

• “Metamorphisms: Streaming Representation-Changers”, Jeremy
Gibbons, Science of Computer Programming, 65:108–139, 2007

• “Arithmetic Coding with Folds and Unfolds”, Richard Bird and
Jeremy Gibbons, Advanced Functional Programming,
LNCS 2638:1–26, 2003

My papers are available from my webpage:

http://www.cs.ox.ac.uk/jeremy.gibbons

