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1. Spigot algorithms for �

Rabinowitz & Wagon’s algorithm, obfuscated by Winter & Flammenkamp:

a�52514�;b; c � 52514;d; e; f � 1e4;g;h;

main��f
for�; b � c �� 14; h � printf �"%04d"; e� d = f ��

for�e � d %� f ; g��� b � 2; d =� g�
d � d � b � f � �h ? a�b� : f = 5�;a�b� � d %�� g;

g
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A spigot algorithm: digits ‘drip’ out, one by one (or here, four by four),
with limited intermediate storage.
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2. Finite versus infinite sequences

R&W’s algorithm inherently bounded, committing initially to length:

“One cannot simply [keep going], because memory allocations
must be made in advance”.

W&F’s program operates on a finite array, generating just 15,000 digits.

This program

pi � g �1;0;1;1;3;3� where

g �q; r; t;k;n; l� �
if 4� q � r � t < n� t

then n : g �10� q;10� �r � n� t�; t;k;
div �10� �3� q � r�� t � 10� n; l�

else g �q � k; �2� q � r�� l; t � l;k � 1;
div �q � �7� k � 2�� r � l� �t � l�; l � 2�

is based on infinite sequences, and generates digits without bound.
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3. Number representations

Familiar representations use a fixed-radix base; consider
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as number �3; 1;4;1;5; : : :� in fixed-radix base F10 �
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Similarly, think of expansion
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as number �2; 2;2;2; : : :� in mixed-radix base B �
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Computing the digits of � is then radix conversion from B to F10.

Regular representations: digit i after the point is

• in �0;9�, and ‘maximal fraction’ is �0; 9;9;9 : : :� � 1, for F10;

• in �0;2i�, and maximal fraction is �0; 2;4;6 : : :� � 2, for B.
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4. Converting to fixed-radix base

Digits in base F10 of number x (assume 0 � x < 10):

• first digit d � bxc

• remainder is x � d

• remaining digits obtained from 10� �x � d�

In Haskell:

decimal x � d : decimal �10� �x � fromIntegral d��
where d � floor x

We have to do this for number x represented in B.
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5. Operations in mixed-radix base

For number x � �a0; a1;a2;a3 : : :� in B,

• bxc is either a0 or a0 � 1, depending on whether remainder
�0; a1;a2;a3 : : :� is in �0;1� or �1;2�

• (remainder cannot be 2, for irrational x)

• so need to buffer any 9s produced, in case of carries

• multiplying x by 10 can be achieved by multiplying each ai by 10

• this typically yields an irregular representation

• for finite number, regularize from right to left, carrying leftwards

For infinite number, regularization needs to be left to right.
This can be done by streaming.
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6. Streaming: the idea

Consider conversion of infinite representations from base Fm to Fn.

Key idea:

first few input digits determine first few output digits.

So consume first few, produce first few, continue with remainder.

Maintain additional information, representing the function from the
remaining inputs to the remaining outputs: with input
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x � 1
n

�
b0 �

1
n

�
b1 � � � � �

1
n

�
bj�1 � v �

�
u� 1

m

�
ai �

1
m

�
ai�1 � � � �

������
Represent that function by the pair �u;v� of rationals.
Initially, i � j � 0 and �u;v� � �0;1�.
Commit when v � �u� 0� and v � �u� 1� have same first digit in base n.
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7. Streaming: an example

For example, 1=e � 0:100221 : : : in F3, and 0:240 : : : in F7.

First three input digits 100 determine first output digit 2:

0:27 < 0:1003 < 0:1013 < 0:257

So consume first three input digits, produce first output digit; continue
with remainder.

First few states of the conversion:

ai 1 0 0 2 2 1

u;v 0
1 ;

1
1

1
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1
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3
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1
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9
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1
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7
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bj 2 4

First safe state is �u;v� �
�9

1 ;
1
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�
, the first for which we have:

b7� v � uc � b7� 1
27 �

9
1c � 2 � b7� 1

27 � �
9
1 � 1�c � b7� v � �u� 1�c
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8. Streaming: the pattern

stream :: �b!Bool�! �b!c�! �b!b�! �b!a!b�! b ! �a�! �c�
stream safe next prod cons z �x : xs�
� if safe z then y : stream safe next prod cons �prod z� �x : xs�

else stream safe next prod cons �cons z x� xs
where y � next z

In particular,

convert �m;n� xs � stream safe next prod cons init xs where

�m0;n0� � �fromInteger m; fromInteger n�
init � �0 % 1;1 % 1�
next �u;v� � floor �u� v � n0�
safe �u;v� � �next �u;v� �� floor ��u� 1�� v � n0��
prod �u;v� � �u� fromInteger �next �u;v�� = �v � n0�;v � n0�
cons �u;v� x � �fromInteger x � u�m0;v =m0�
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9. Back to �

Can use streaming to regularize an infinite representation.
But there is a more direct approach to computing the digits of �.
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• fixpoint of
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�

is 3, fixpoint of
�
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2�
�

is 4

• so each LFT maps interval �3;4� onto a subinterval of itself

• each LFT shrinks by at least a factor of 2

• so compositions of such LFTs converge to a point in �3;4�.

Finding that point is another change of representation,
from infinite sequences of LFTs to infinite sequences of decimal digits.
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10. Streaming �

• each input LFT is a 2-by-2 matrix of integers��1
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• then produce digit n, and multiply state by
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1

�
, inverse of the

LFT x , n� x
10

• otherwise consume next LFT, by matrix multiplication
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11. Program for �

pi � stream safe next prod cons init lfts where

init � unit

lfts � ��k;4� k � 2;0;2� k � 1� j k  �1 : :��
next z � floor �extr z 3�
safe z � �next z �� floor �extr z 4��
prod z � comp �10;�10� next z;0;1� z

cons z z0 � comp z z0

where comp is matrix multiplication, and extr extracts the LFT from a
matrix

�q
s

r
t

�
, taking x to �q � x � r�=�s � x � t�.

Obfuscated program obtained from this by inlining definitions,
and observing that invariant s � 0 holds in all our LFTs

�q
s

r
t

�
.
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12. Reasoning about stream

For finite sequences, express change of representation by abstraction,
consuming one representation:

foldl :: �b ! a ! b�! b ! �a�! b
foldl h z �x : xs� � foldl h �h z x� xs
foldl h z � � � z

followed by reification, producing the other:

unfoldr :: �b ! Bool�! �b ! c�! �b ! b�! b ! �c�
unfoldr p f g z � if p z then f z : unfoldr p f g �g z� else � �

and convert p f g h z xs � unfoldr p f g �foldl h z xs�.

Sometimes this process can be streamed: if state z satisfies

9y � 8xs � convert p f g h z xs � y : : : :

then it is safe to produce y from z before consuming any more of xs.
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13. Arithmetic coding

Data compression, of a text to a bit sequence:

• distribute alphabet across unit interval

• narrow unit interval, character by character

• output shortest binary fraction in final interval

For example, with a ,
�
0; 1

2

�
, b ,

�1
2 ;

2
3

�
, c ,

�2
3 ;1

�
0 1

2
2
3 1

a b c

and text abacab:�
0;1

� a�!
�
0; 1

2

� b�!
�1

4 ;
1
3

� a�!
�1

4 ;
7

24

� c�!
� 5
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7
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� a�!
� 5

18 ;
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144

� b�!
� 9

32 ;
61

216

�
and

� 9
32 ;

61
216

�
contains 0:01001 and no shorter binary fraction.

For efficiency, we wish to stream the output.
Lecturing on arithmetic coding led us to the streaming abstraction.
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