A Look at Router Geolocation in Public and Commercial Databases

Manaf Gharaibeh¹, Anant Shah¹, **Bradley Huffaker²**, Han Zhang¹, Roya Ensafi³, Christos Papadopoulos¹

¹Colorado State University ²CAIDA / UC San Diego ³University of Michigan

IIJ Presentation

Tokyo, Japan

November 21, 2017

IP geolocation

 IP geolocation maps an IP address to a physical real-world location

term

The edge vs the center

term

- Most of the money and commercial interest is in the edge.
 - users
 - content
- So geolocation databases focus most effort on edge

The edge vs the center

term

- Many important research questions focus on the center.
 - Censorship
 - Geographic stretch
 - Ownership
- How accurate are the geolocation databases for the center?

Motivation

- Router geolocation is used in network research:
 - BGP route visualization and detection of BGP threats
 - Detection of routing paths that experience international detours
 - Studying censorship and monitoring
- Geolocation databases (geo-DBs) accuracy for infrastructure addresses
 - Geo-DBs accuracy evaluation is dominated by the results over end-host addresses
 - Researchers are left unsure about the geo-DBs accuracy over infrastructure addresses such as routers

- Quantify geo-DBs coverage and consistency for router geolocation
- Quantify expected **accuracy** for router geolocation
 - Identify which geo-DBs perform better and where (regional evaluation)

Geo-DBs in this study

Free	Commercial
IP2Location DB11.Lite	Digital Envoy NetAcuity*
MaxMind GeoLite	MaxMind GeoIP2 ⁺

- *Netacuity: CAIDA has agreement for free access
- ***GeoIP2**: purchased access at full price

Validation datasets

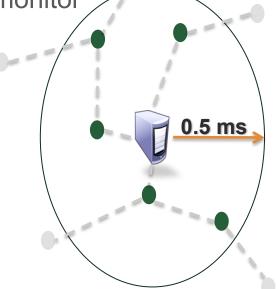
Dataset	Ark topo routor	Ground Truth				
	Ark-topo-router	DNS-based	RTT-proximity			
Source/method	CAIDA Router Topology*	CAIDA DNS Dataset* Location hints ground truth rules	RIPE Atlas traceroute built-in measurement / RTT-based			
IP addresses count	1.64M 0.69M (city consitency) ⁺	11,857	4,838			
Used to study	Coverage & Consistency	Accuracy				

- * Macroscopic Internet Topology Data Kit (ITDK) <u>http://www.caida.org/data/internet-topology-data-kit/</u>
- + IPs with city-level coordinates in all geo-DBs

DNS-based (accuracy validation)

- Some operators encode geographic hints into some DNS names
- Operators provided geographic heuristics for 7 domains*

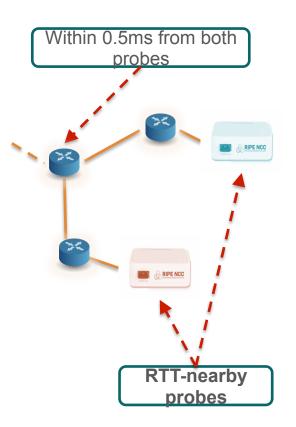
...<airport code>\d*.atlas.cogentco.com


be1273.ccr41.**lax**04.atlas.cogentco.com Los Angeles, US be3257.ccr41.**iad**02.atlas.cogentco.com Washington, US te0-7-0-1.rcr21.b054208-1.**lhr**01.atlas.cogentco.com London, UK

Domain	belwue. de	cogentco.c om	digitalwest. net	ntt.net	peak10.net	seabone.ne t	pnap.net
IP address count	23	6,462	29	2,331	170	1,405	1,437

*Huffaker et al., DRoP: DNS-based Router Positioning. ACM SIGCOMM Computer Communication Review 44, 3 (2014), 5–13.

RTT-proximity (accuracy validation)


- Leverage RIPE Atlas built-in traceroute measurements data
 - From May 25th, 2016
 - Find all IP hops within 0.5ms threshold from monitor
 - IP are then within **50 km** from the probe
 - Associate each IP with monitor
 - Filter incorrectly relocated probes
 - 4,838 addresses satisfy the RTT threshold

Incorrectly geolocated Atlas probes RTT-nearby probes with very different locations

- Insight: RTT-nearby probes should also be near each other
- 495 RTT-proximity addresses have RTT-nearby groups of 2 or more probes
 - Only 12 addresses (2.4%) have RTT-nearby probes with inconsistent locations.
 - 4 have prominent location inconsistencies.
 - 8 have relatively small disagreements (< 128 km)
- Overall, 223 probes are part of one or more RTTnearby groups
 - Only 5 probes (2.2%) are disqualified (along with 13 interface addresses associated with them in the dataset)

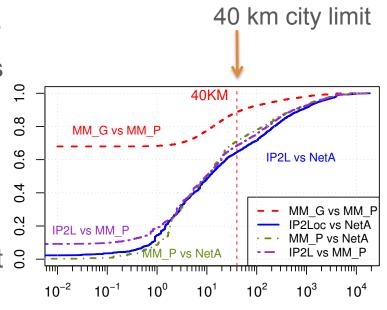
Methodology

- 40 km city radius
 - Distance between database coordinates for the same city
- Coverage
 - IP has an answer at the given level
- Consistency (geo-DB vs itself)
 - All the router's IPs has the same country
 - All the **router's IPs** are with in a **city radius**
- Accuracy (geo-DBs vs ground truth)
 - IP address has the same country as GT
 - IP address is with in city radius of the GT (Geoname coordinates)

Ark-topo-router (coverage validation)

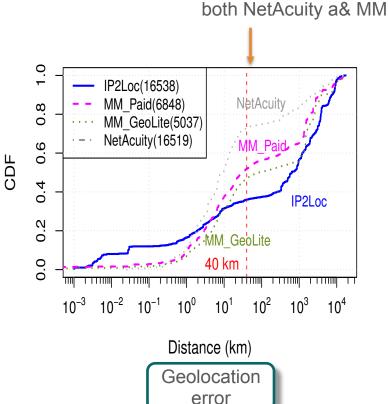
Geo-DB	IP2Location- Lite	NetAcuity	MaxMind- GeoLite	MaxMind-Paid	
Country	~100%	~100%	99.3%	99.3%	
City	99.9%	99.9%	43%	61.6%	

Country level


- All databases provided country level geolocations for all IP
- City level
 - IP2Location-Lite and Netacuity provided almost 100% coverage
 - MaxMind-GeoLite covers 43%, paid improves to 61%

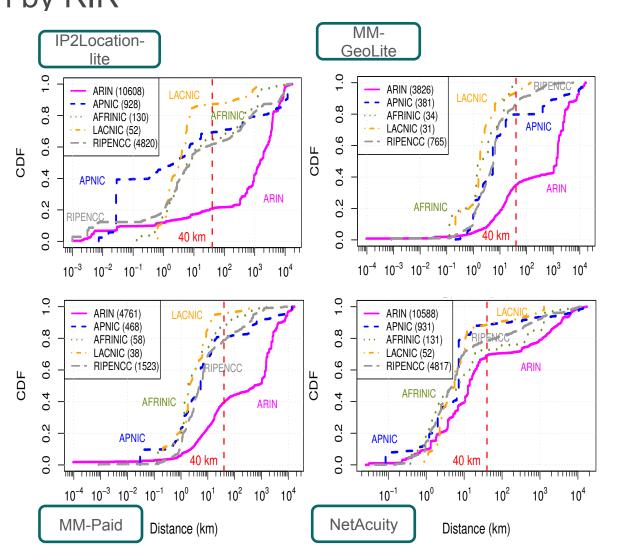
* Macroscopic Internet Topology Data Kit (ITDK) http://www.caida.org/data/internet-topology-data-kit/

Ark-topo-router (cross consistency)

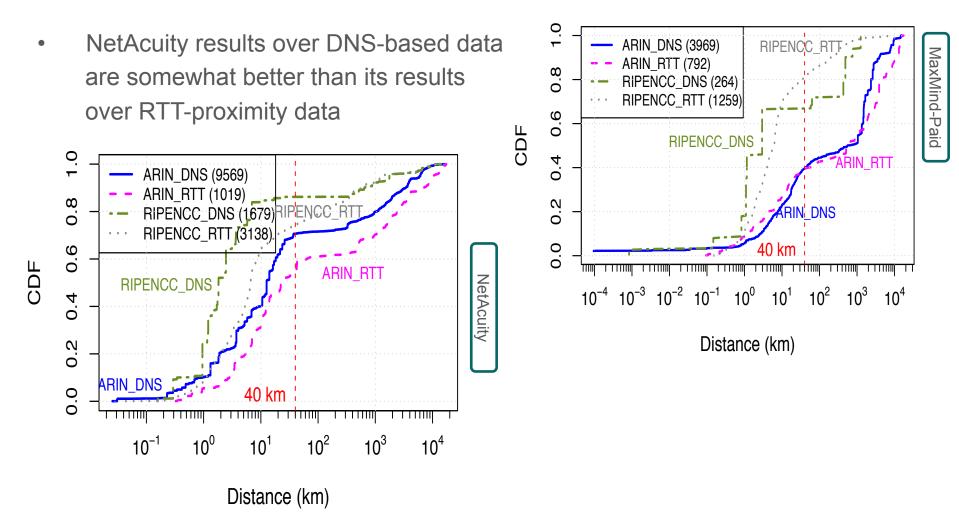

- Country-level (1.64M IPs)
 - Pairwise > 97% for any two geo-DBs
 - 95.8% for all 4 geo-DBs agreements
- City-level (0.69M IPs)
 - The 2 MaxMind DBs disagree on 告
 11.4% of IPs
 - Different vendors disagree on at least 3
 29% of IPs

Distance (KM)

Quantifying Geo-DBs accuracy Using ground truth data (DNS-based + RTT-proximity)


- Country-level
 - IP2Location-Lite and MaxMind DBs are comparable:
 77.5% to 78.6% accuracy
 - NetAcuity: 89.4%
- City-level (40 km city radius)
 - IP2Location-Lite: **lowest** accuracy
 - MaxMind-Paid vs. MaxMind-GeoLite:
 - 30.4% for geolite
 - 41.3% for paid
 - NetAcuity highest with **73%** accuracy

40 km, is a knee for


Geo-DBs regional accuracy City-level breakdown by RIR

- ARIN does does
 poorly across all geo DBs
- Much of NetAcuity's advantage comes in ARIN
- LACNIC and AFRINIC
 under sampled

Do databases take advantage of location hints?

Results vs. DNS-based set and vs. RTT-bases set (city-level)

Summary country level

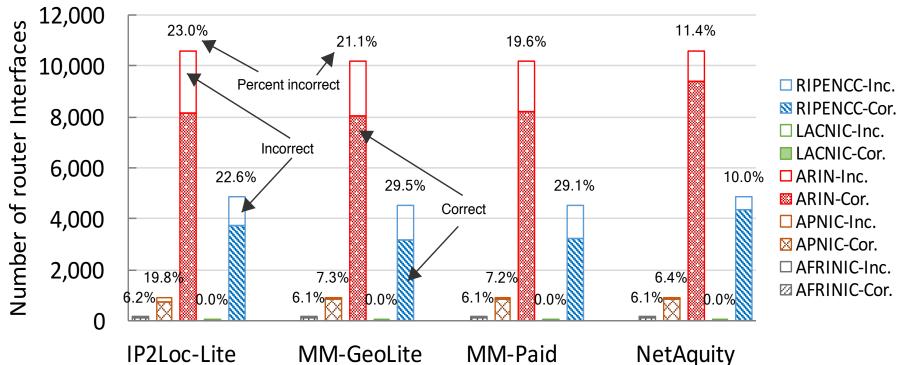
- Good coverage for all databases
- IP2Location-Lite and MaxMind have similar accuracy (77.5% to 78.6%)
- NetAcuity highest accuracy (89.4%)

Summary city level

- IP2Location-Lite:
 - High coverage (99.9%), but low accuracy (36%)
- MaxMind-GeoLite vs. MaxMind-Paid (what you pay for):
 - Large coverage increase from 43% to 61%
 - Moderate accuracy increase from 47% to 52%
 - Poor ARIN accuracy 35% and 40%
- NetAcuity:
 - High coverage (99.9%) and highest accuracy (73%)
 - Better ARIN accuracy (69%)

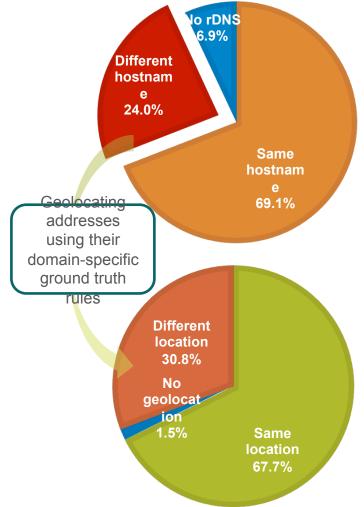
Conclusions

- All geo-DBs have room to improve their router geolocation accuracy at both country- and city-level
- Researchers need to be aware of the geo-DBs inaccuracies and their impact on their research results


Our ground truth dataset is available via IMPACT: https://www.impactcybertrust.org/dataset_view?idDataset=792

Backup Slides

Regional (RIR) accuracy


- AFRINIC and LACNIC are under sampled
- NetAcuity is the most accurate in all regions
- IP2Location-Lite, MaxMind DBs are comparable at country-level

Incorrectly geolocated Atlas probes Probes with default country-level coordinates

- Typically near the geographic center of a country
- Indicate lack of specific city-level location
- E.g., The United States: 38 00 N, 97 00 W
- Out of 1,387 probes associated with our 0.5ms threshold data
 - 19 probes have default country coordinates
 - Associated with 109 IP addresses
 - All are omitted from the dataset

How often IP addresses move?

- For the 11,857 DNS-based addresses
- Between May 2016 and September 2017
- Hostnames changed for 24% of the addresses
 - Not all hostnames changes indicate location changes
 - Only 30.8% have different
 location (7.4% of all DNS-based

Recommendations for researchers

- NetAcuity has the best combination of coverage, accuracy across all regions
 - We recommend NetAcuity to geolocate routers if geo-DBs is the only option available
- IP2Location-Lite overall accuracy is too low
 - We do not recommend it

LISTVERSITY OF MICHIGAN

- MaxMind DBs are doing bad in ARIN, good in other regions, but have very low city-level coverage
 - We do not recommend them if high city-level accuracy and coverage are required
 - We recommend the paid version over the public one (better city-level coverage and accuracy)
 - All geo-DBs show less accuracy for ARIN addresses

Incorrectly Geolocated Atlas Probes

- Second method is based on the insight:
 - Multiple probes near the same router should also be near each other
 - 495 RTT-proximity addresses have RTT-nearby groups of 2 or more probes
 - Only 12 addresses (2.4%) have RTT-nearby probes with inconsistent locations.
 - 4 have prominent location inconsistencies.
 - The 8 remaining addresses have relatively small disagreements (< 128 km)
 - Overall, we have 223 different probes that are part of one or

DNS-based set

- We decode location hints in routers' hostnames
 - Use domain-specific rules from 7 ground truth domains*
 - Rules are obtained from the domains operators
- Performing reverse DNS lookups to the Ark-topo-router addresses
 - 905K addresses have hostnames (55%)
 - About 13.5K belong to the 7 ground truth domains

A_A	057			a a la a fa d'una ina tha a manua d'fur			
Domain	belwue. de	cogentco.c om	digitalwest. net	ntt.net	peak10.net	seabone.ne t	pnap.net
IP address count	23	6,462	29	2,331	170	1,405	1,437

*Huffaker et al., DRoP: DNS-based Router Positioning. ACM SIGCOMM Computer Communication Review 44, 3 (2014), 5–13.

DNS-based data correctness

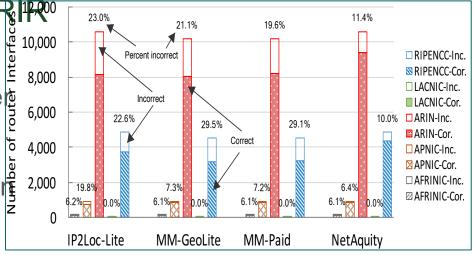
Agreement with latency measurement data

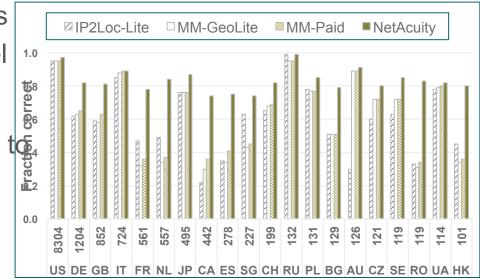
- Our RTT-proximity ground truth
 - 109 common addresses
 - 105 addresses agree within 10 km and 4 addresses agree within 43 km
- Using a second RTT-proximity dataset**
 - A set of routers within 1ms RTT threshold from Atlas probes (collected on April 2017)
 - **384 addresses are common** with our DNS-based dataset
 - 355 addresses (92.45%) agree within 100 km (337 addresses (87.8%) agree within 40 km)
 - 19 addresses are likely reassigned to hosts at different locations (as recent rDNS records show)
 - No conflict with the DNS-based data

**Giotsas-et al. Remainingtenerses disagreenerits might be a result of stale hostnames,

Regional and topological distribution

DNS-based and RTT-proximity sets


Ground truth	IP count	Countrie s	Unique coordina tes	ARIN	APNIC	AFRINIC	LACNIC	RIPENC C	Transit ASes
DNS- based	11,857	53	238	9,588	560	0	0	1,709	99.9%
RTT- proximit y	4,838	118	1,347	1,123	372	131	52	3,160	74.5%



Quantifying Geo-DBs regional accuracy

Country-level breakdown by RIP?

- AFRINIC and LACNIC are under sampled
- NetAcuity is the most accurate in all regions
- IP2Location-Lite, MaxMind DBs are comparable at country-level
- However, geo-DBs accuracy varies greatly from one country to another (as the bottom graph shows)



Quantifying Geo-DBs regional accuracy

Country-level breakdown by RIR

- Graph shows top 20 countries in ground truth (number of addresses)
- Geo-DBs accuracy varies greatly from one country to another
- NetAcuity is the most consistent: at least 74% in all countries

ARIN

MaxMind-Paid as a case study

- 2,793 ARIN addresses are **not** in the US
 - 1,955 of them (70%) are geolocated to the US
 - 519 of the 1,955 addresses have city-level geolocation
 - 504 out the 519 have disagreements > 1,000 km with ground truth
 - Possible fallback to registry information
- 3,897 ARIN addresses are located in the US with city-level information
 - 2,267 (58.2%) have geolocation error > 40 km
 - 91% of them have block-level (/24 block or larger) locations
 - Compared to 78% of the correctly geolocated addresses at city-level
 - Block-level location assignments can be responsible for large geolocation errors (previous work)