大規模IPv6ネットワークスキャン を見つける

福田健介 kensuke@nii.ac.jp 国立情報学研究所/総合研究大学院大学

1

Notional Institute of Informatics

Kensuke Fukuda (福田健介)

- Affiliation:
 - National Institute of Informatics (国立情報学研究所) – Sokendai (総合研究大学院大学)
- Position: Associate professor
- Research interests: Network measurement, Network security

Kensuke Fukuda (福田健介)

- Affiliation:
 - National Institute of Informatics (国立情報学研究所)
 - Sokendai (総合研究大学院大学)
- Position: Associate professor
- Research interests: Network measurement, Network security

学生募集してます!

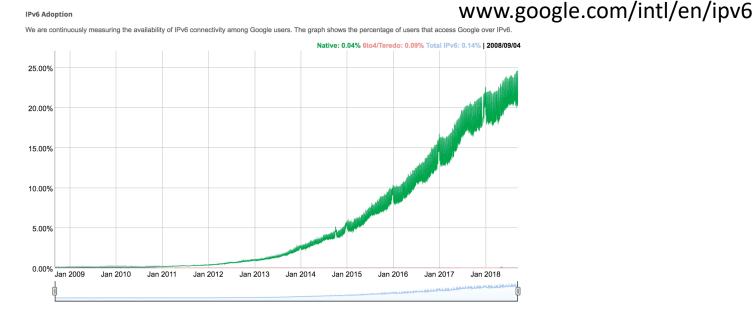
Detecting IPv6 network scanners

Kensuke Fukuda

National Institute of Informatics / Sokendai

Fukuda, et al. "Detecting Malicious Activities with DNS Backscatter over Time." In IEEE/ACM Transactions on Networking, vol.25, no.5, pp.3203–3218, 2017.

Fukuda, et al. "Who Knocks at the IPv6 Doors? Detecting IPv6 Scanning" In ACM Internet Measurement Conference 2018, Boston, MA, 2018. (to appear)


National Institute of Informatics

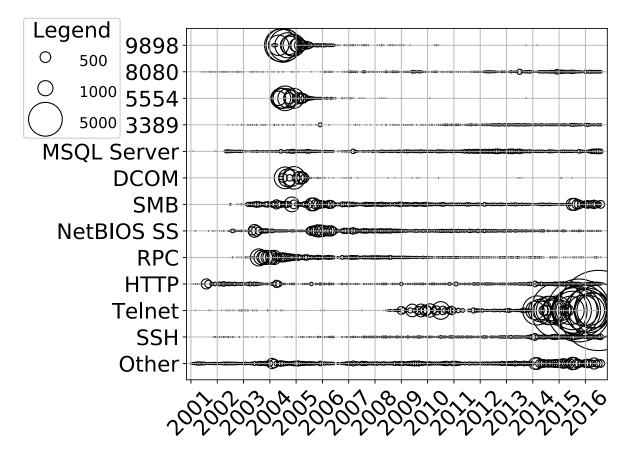
Today's talk

- Introduction
- Network scans: state of the art
 - Hitlist generation
 - IPv4/IPv6 sensitivity
- Finding IPv6 scanners with DNS backscatter
 - DNS backscatter
 - How to adapt to IPv6
 - Measurement results
 - Sensitivity
 - Detecting IPv6 scanners

Deployment of IPv6

- Growth of IPv6 deployment
 - 20% of Google users
 - 25% of ASes announce IPv6 prefix

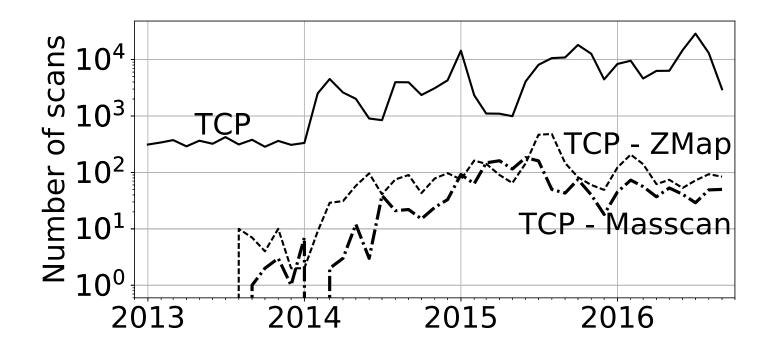
IPv6 security does matter?


IPv4 scan

- Easy to scan whole IPv4 address space
 - Research purpose
 - Finding vulnerability
 - Detecting outage
 - Other purpose
- De facto scanning tool: Zmap
 - Takes 45 min with a single 10GE port
 - Many security studies used Zmap

Z.Durumeric, et al. "Zmap: Fast Internet-wide Scanning and Its Security Applications." In USENIX Security Symposium 2013, pp.605-620, Washington D.C, 2013

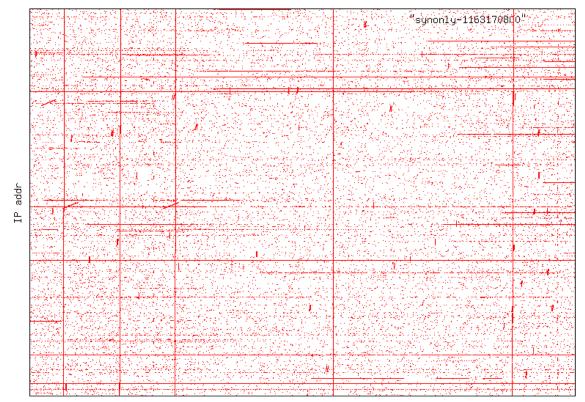
7


IPv4 scan in the wild

• Measured at a transit link in WIDE (AS2500)

J.Mazel, et al. "Profiling Internet Scanners: Spatiotemporal Structures and Measurement Ethics." In TMA 2017, Dublin, Ireland, 2017, IEEE/IFIP

IPv4 scan in the wild



> 100 scanning IPs / month with scan tools

J.Mazel, et al. "Profiling Internet Scanners: Spatiotemporal Structures and Measurement Ethics." In TMA 2017, Dublin, Ireland, 2017, IEEE/IFIP

IPv4 scan in the wild

TCP SYN destination IP address (1day)

epoch

• Source: /18 IPv4 darknet

- Introduction
- Network scans: state of the art
 - Hitlist generation
 - IPv4/IPv6 sensitivity
- Finding IPv6 scanners with DNS backscatter
 - DNS backscatter
 - How to adapt to IPv6
 - Measurement results
 - Sensitivity
 - Detecting IPv6 scanners

Difficulty in IPv6 scan

• Huge address space

- IPv4: 4.3 x 10⁹ -> IPv6: 3.4 x 10³⁸

- SLAAC: Stateless Address Auto Configuration
 - EUI-64 based (RFC4291)
 - Semantically Opaque Interface Identifiers (RFC7217)

Random probing is not efficient!

Question: How to generate target IPv6 addresses?

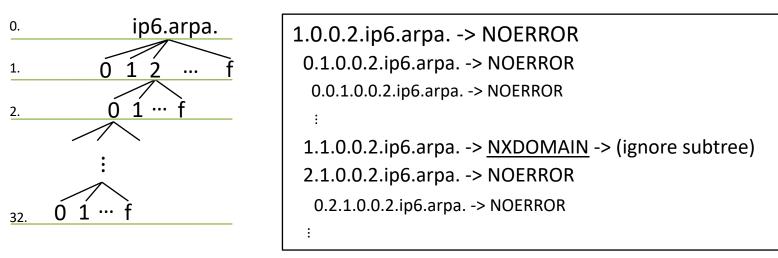
Making target hitlists for scan

- Passive data collection
 Traffic data
- Active data collection
 - Alexa top 1M, rDNS (IPv4 -> A -> AAAA -> IPv6), traceroute, Zone files,
- Target generation
 - rDNS scan
 - Generating plausible addresses

Passive and Active measurement

Characteristic	Active sources	Passive sources	Traceroutes	CAIDA [5]
File size	75MB	5.4GB	2.4MB	40MB
Unique input lines	2.7M	149M	1.3M	618k
Unique targets	2,699,573	148,631,234	109,554	102,580
Unique ASes	5,750	8,219	4,170	5,488
Unique announced prefixes	8,602	17,554	5,367	9,269
AS coverage	56.46%	80.71%	41.00%	53.90%
ASes unique to source	128	1,276	14	147
Normalized ASes	1,918.33	3,684.67	1,158.83	1,873.17
Prefix coverage	33.37%	68.09%	20.76%	36.00%
Prefixes unique to source	346	5,798	53	514
Normalized prefixes	3,199.25	10,302.58	1,569.92	3,681.25
ICMPv6 response rate	75.5%	13.3%	n/a	42.0%
Combined unique IPs		149,61	9,624	
Combined AS coverage	8,531 (83.77%)			
Combined prefix coverage		18,502 (71.7	77%)	

O. Gasser, et al. "Scanning the IPv6 Internet: Towards a Comprehensive Hitlist." In TMA 2016., Louvain La Neuve, Belgium, 2016. IFIP


Passive and Active measurement

Characteristic	Active sources	Passive sources	Traceroutes	CAIDA [5]
File size	75MB	5.4GB	2.4MB	40MB
Unique input lines	2.7M	149M	1.3M	618k
Unique targets	2,699,573	148,631,234	109,554	102,580
Unique ASes	5,750	8,219	4,170	5,488
Unique announced prefixes	8,602	17,554	5,367	9,269
AS coverage	56.46%	80.71%	41.00%	53.90%
ASes unique to source	128	1,276	14	147
Normalized ASes	1,918.33	3,684.67	1,158.83	1,873.17
Prefix coverage	33.37%	68.09%	20.76%	36.00%
Prefixes unique to source	346	5,798	53	514
Normalized prefixes	3,199.25	10,302.58	1,569.92	3,681.25
ICMPv6 response rate	75.5%	13.3%	n/a	42.0%
Combined unique IPs		149,61	9,624	
Combined AS coverage		8,531 (83.)	77%)	
Combined prefix coverage		18,502 (71.	77%)	

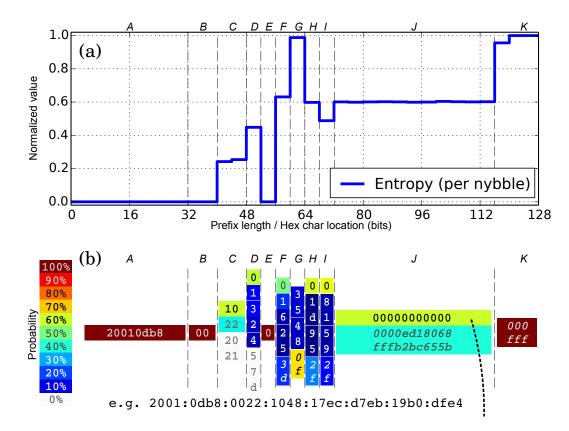
O. Gasser, et al. "Scanning the IPv6 Internet: Towards a Comprehensive Hitlist." In TMA 2016., Louvain La Neuve, Belgium, 2016. IFIP

Reverse DNS (rDNS) scan

Crawling PTR registered name

Found 5.8M new addresses (from 73K /32 seeds)

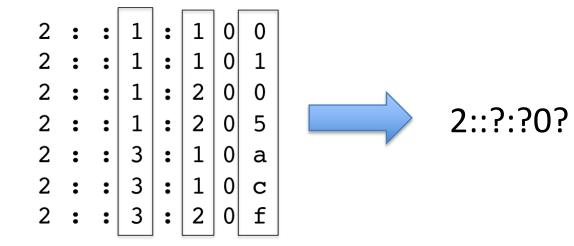
T. Fiebig, et al. "Something from nothing (There): Collecting global IPv6 datasets from DNS," In PAM'17, pp.30-43, Sydney, Australia, 2017.


Note on rDNS scan

- How often PTRs are registered in v6?
- Checking route advertised 175K /32 prefixes (2018.09)
 - No error: 7K
 - Serv fail: 33K
 - NX domain: 135K
- Sparsely registered!
 - Usage is limited?
 - Registration is limited?

新津, et al. "大規模IPv6アドレス収集手法の検討." 信学技法 2018.09

Generating plausible addresses


• Bayesian inference with nibble-based entropy

P. Foremski, et al. "Entropy/ip: Uncovering structure in ipv6 addresses." In IMC'16, pp.167-181, Santa Monica, USA, 2016.

Generating plausible addresses

• Clustering dense part of nibbles

A.Murdock, et al. "Target Generation for Internet-wide IPv6 Scanning." In IMC'17, pp.167–181, London, UK, 2017.

Summary: Hitlist generation

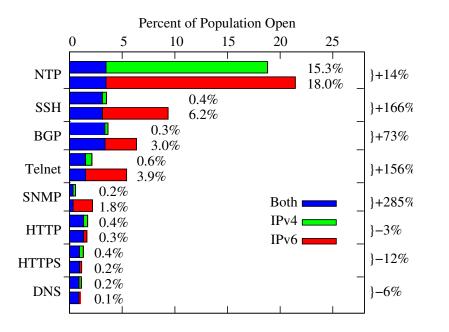
	Data source	$\# \mathbf{Addresses}$
Gasser et al. $[7]$	traffic, traceroute,	$150\mathrm{M}$
	DNS AAAA/PTR	
Defeche et al. $[8]$	BitTorrent peers	$1.5\mathrm{M}$
	\mathbf{Method}	#Addresses (seeds)
Fiebig et al. $[9]$	$\begin{array}{c} \mathbf{Method} \\ \mathrm{rDNS \ scan} \end{array}$	#Addresses (seeds) 5.8M (73K)
Fiebig et al. [9] Foremski et al. [10]		

新津, et al. "大規模IPv6アドレス収集手法の検討." 信学技法 2018.09

- Introduction
- Network scans: state of the art
 - Hitlist generation
 - IPv4/IPv6 sensitivity
- Finding IPv6 scanners with DNS backscatter
 - DNS backscatter
 - How to adapt to IPv6
 - Measurement results
 - Sensitivity
 - Detecting IPv6 scanners

IPv6 scan response

Characteristic	Active sources	Passive sources	Traceroutes	CAIDA [5]
File size	75MB	5.4GB	2.4MB	40MB
Unique input lines	2.7M	149M	1.3M	618k
Unique targets	2,699,573	148,631,234	109,554	102,580
Unique ASes	5,750	8,219	4,170	5,488
Unique announced prefixes	8,602	17,554	5,367	9,269
AS coverage	56.46%	80.71%	41.00%	53.90%
ASes unique to source	128	1,276	14	147
Normalized ASes	1,918.33	3,684.67	1,158.83	1,873.17
Prefix coverage	33.37%	68.09%	20.76%	36.00%
Prefixes unique to source	346	5,798	53	514
Normalized prefixes	3,199.25	10,302.58	1,569.92	3,681.25
ICMPv6 response rate	75.5%	13.3%	n/a	42.0%
Combined unique IPs		149,61	9,624	
Combined AS coverage		8,531 (83.)	77%)	
Combined prefix coverage	18,502 (71.77%)			


O. Gasser, et al. "Scanning the IPv6 Internet: Towards a Comprehensive Hitlist." In TMA 2016., Louvain La Neuve, Belgium, 2016. IFIP

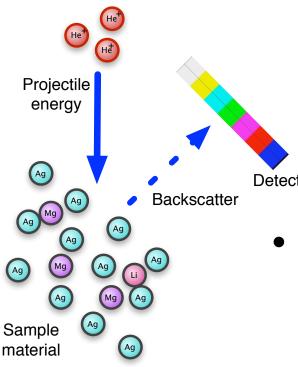
IPv6 scan response

Characteristic	Active sources	Passive sources	Traceroutes	CAIDA [5]
Coverage is so-so, but	75MB 2.7M 2,699,573	5.4GB 149M 148,631,234	2.41 1. 109,	overage is good, bu
Unique anno prefixes	5,750 8,602	8,219 17,554	4, 5,367	few responses
AS coverage	56.46%	80.71%	41 10	53.90%
ASes unique to source Normalized ASes	128 1 918.33	1,276 3,684.67	14 1,158.83	147 1,873.17
Prefix coverage	33.37%	68.09%	20.76%	36.00%
Prefixes unique to source Normalized prefixes	346 3,199.25	5,798 10,302.58	53 1,569.92	514 3,681.25
ICMPv6 response rate	75.5%	13.3%	n/a	42.0%
Combined unique IPs Combined AS coverage Combined prefix coverage		149,619 8,531 (83.7 18,502 (71.7	77%)	

O. Gasser, et al. "Scanning the IPv6 Internet: Towards a Comprehensive Hitlist." In TMA 2016., Louvain La Neuve, Belgium, 2016. IFIP

IPv4/v6 scan response

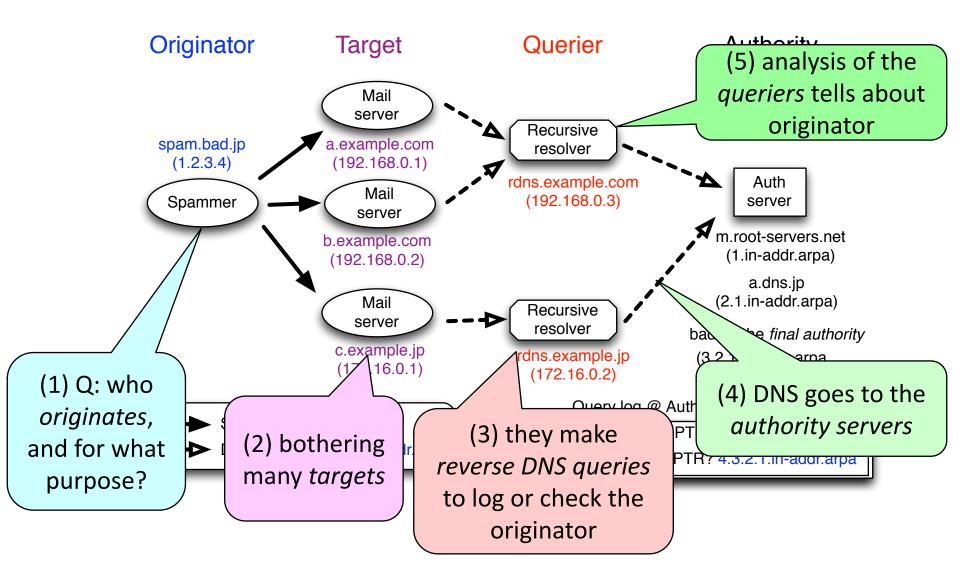
- Ping to 25K Dual stack routers
- More open ports in IPv6

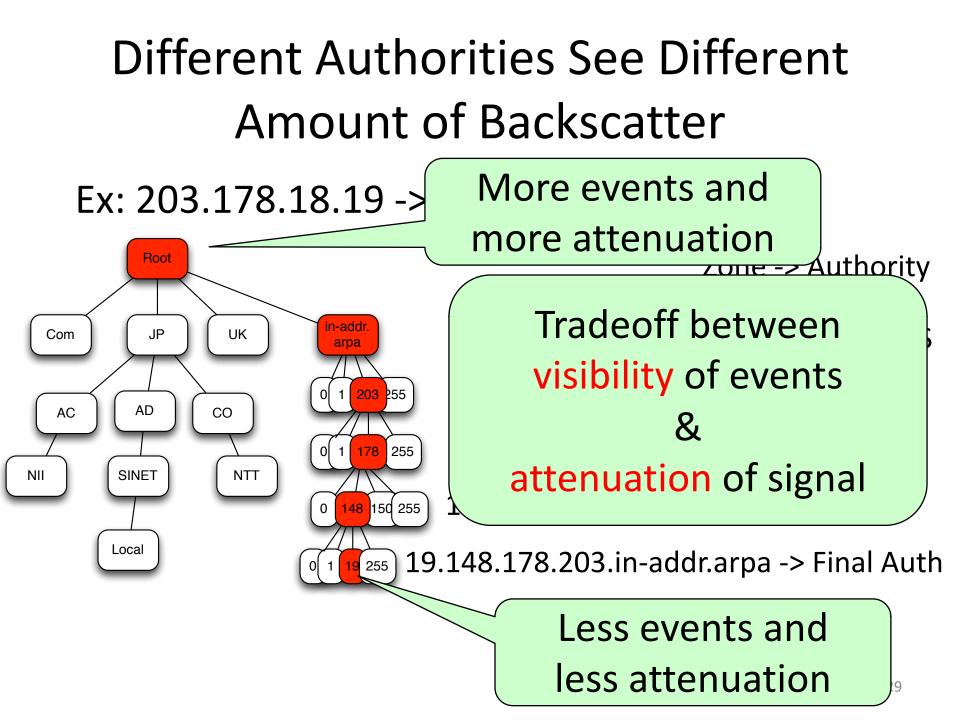

J.Czyz et al. "Don't Forget to Lock the Back Door! Characterization of IPv6 Network Security Policy." In NDSS 2016., San Diego, 2016. Internet Society

- Introduction
- Network scans: state of the art
 - Hitlist generation
 - IPv4/IPv6 sensitivity
- Finding IPv6 scanners with DNS backscatter
 - DNS backscatter
 - How to adapt to IPv6
 - Measurement results
 - Sensitivity
 - Detecting IPv6 scanners

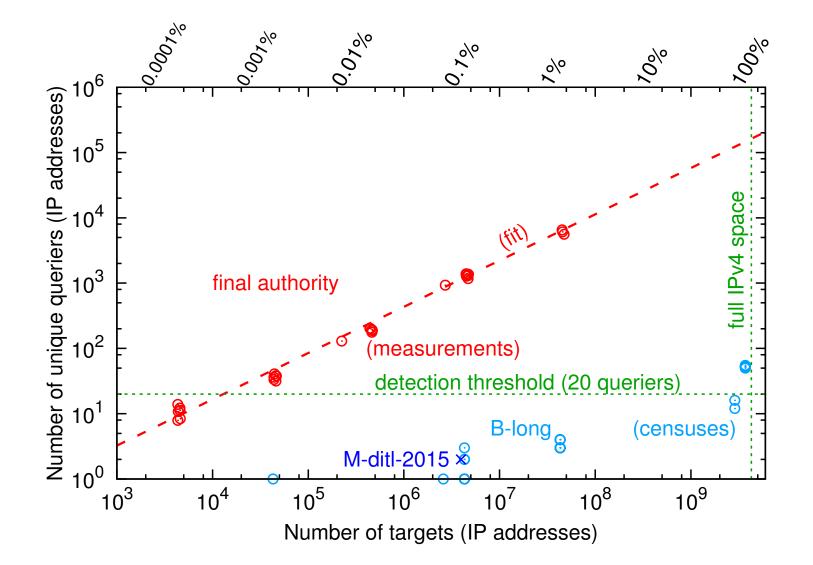
Detecting Network-wide Scans

- Passive backbone/IXP traffic collection
- Darknet (aka network telescope)
 Routed but no legitimate hosts
- Distributed firewall logs (e.g., SANS)
- DNS backscatter

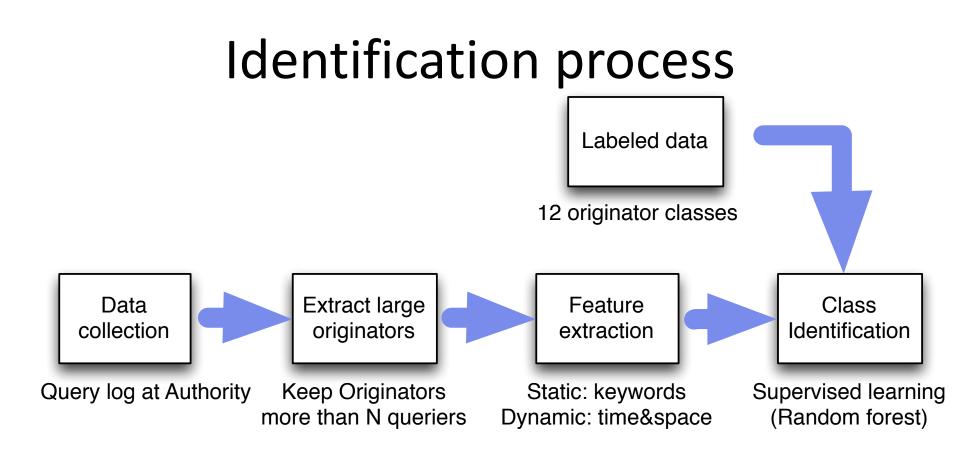

Key idea of DNS backscatter

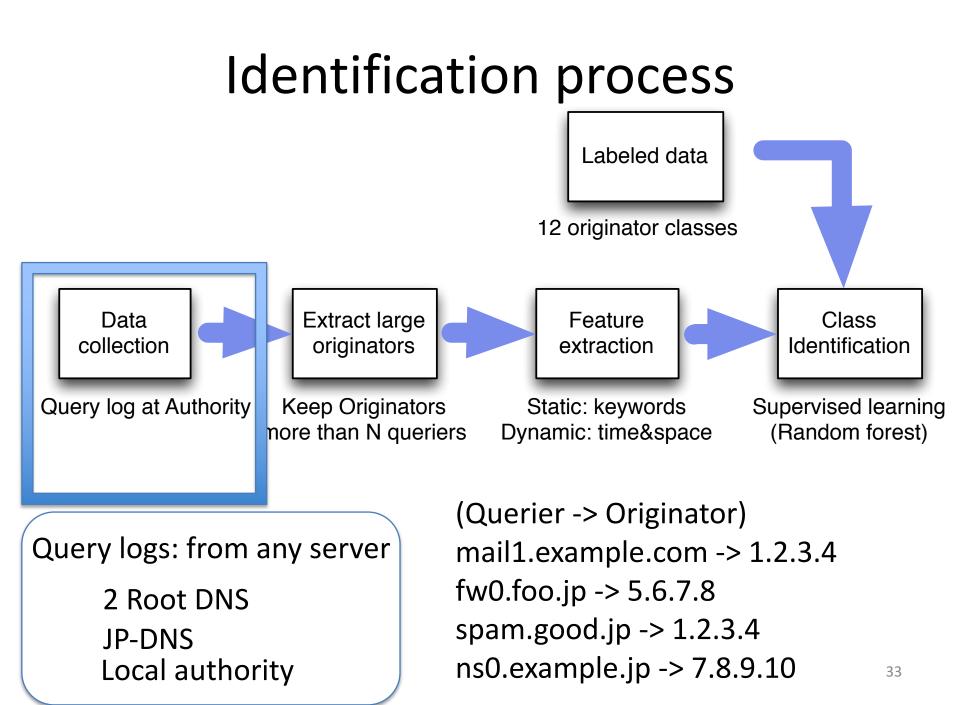


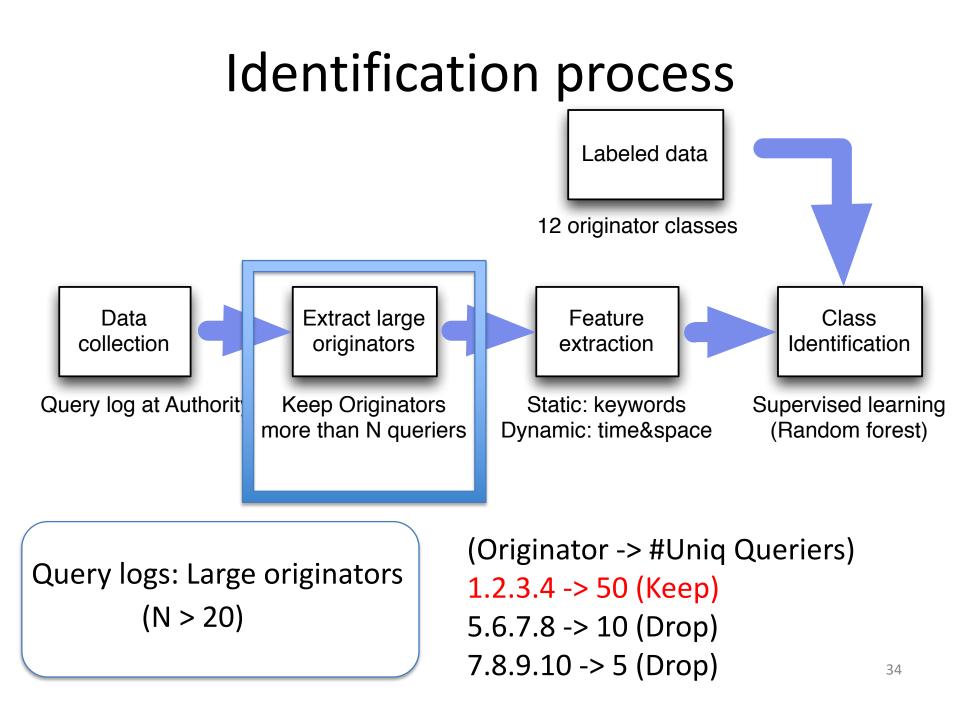
 Large event triggers reverse DNS queries near target automatically - SMTP server: hostname of spammer – Firewall: hostname of scanner Detector – Web server: hostname of web crawler Many reverse DNS queries (DNS backscatter) at auth server are hint to identify events


Fukuda, et al. "Detecting Malicious Activities with DNS Backscatter over Time." In IEEE/ACM Transactions on Networking, vol.25, no.5, pp.3203–3218, 2017.

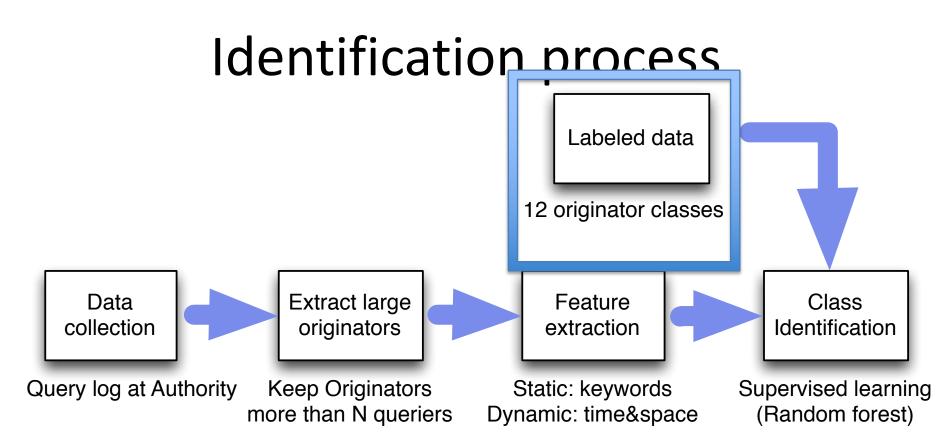
Detecting Events through DNS backscatter

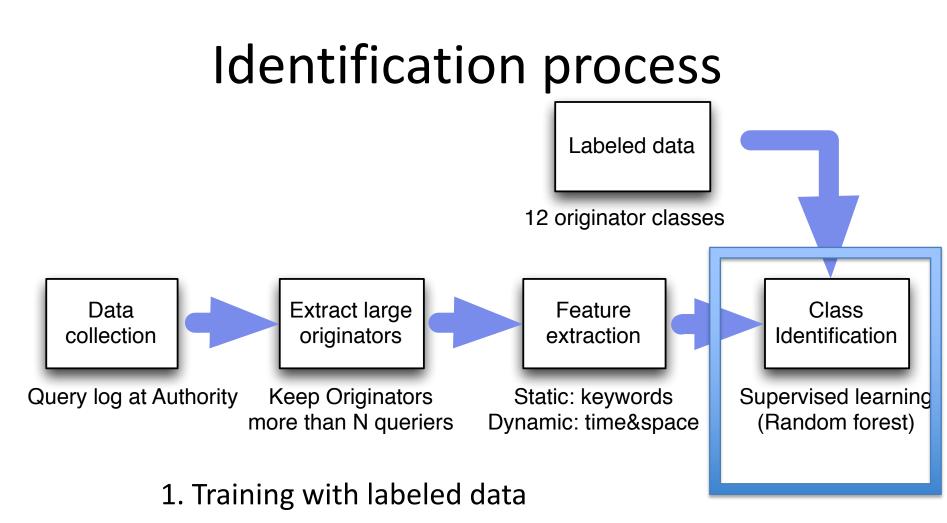



IPv4 backscatter sensitivity

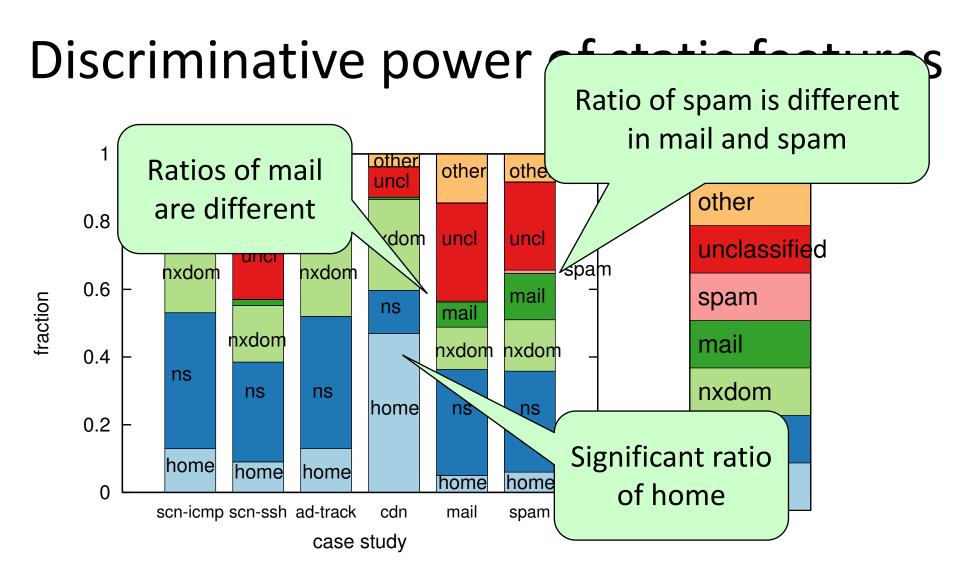


Advantages


- Deployable
 - Centralized monitoring at DNS authority
- Privacy friendly
 - Information is on queriers NOT originators
 - Reverse queries are generated automatically
 - Focus on large events (ignore small users)
- Robust against malicious originators
- Can infer different class of originator (e.g., scanner) with Machine Learning



Ground truth from dozen of public sources (darknet, DNLBL...)


(Class: ad-tracker, cdn, cloud, crawler, dns, mail, scan, spam...)

OriginatorFeature vectorclass11.12.13.14<mail 45%, ns 20%, spam 5%,...>mail21.22.23.24<mail 60%, ns 15%, spam 5%,...>mail31.32.33.34<mail 45%, ns 15%, spam 15%,...>spam³⁶

2. Classify test data with classification matrix

Originator 1.2.3.4 < mail 50%, ns 25%, spam 25%, #AS, qps...> -> spam

Different mixes of features allow distinguishing different classes of events

Picking the best ML algorithm

dataset	algorithm	accuracy	precision	\mathbf{recall}	F1-score	
	CART	0.66	0.63	0.60	0.61	
$_{\mathrm{JP}}$	\mathbf{RF}	0.78	0.82	0.76	0.79	
ditl	SVM	0.73	0.74			
В	CART	0.48	0.48	0.45	RandomFores	t
post-	\mathbf{RF}	0.62	0.66	0.60	is best	
ditl	SVM	0.38	0.50	0.32		
	CART	0.53	0.52	0.49	0.51	
${ m M}$	\mathbf{RF}	0.68	0.74	0.63	0.68	
ditl	SVM	0.60	0.6			
	CART	0.61	<u>0.6</u> Ho	pe to i	mprove with	
${ m M}$	\mathbf{RF}	0.79	0.8 b	etter tr	aining data	
sampled	SVM	0.72	0.7			

- Cross validation with 3 ML algorithms
- Num classes: 12, labeled data:200-800
- Precision: 70-80% (imbalanced dataset problem)

- Introduction
- Network scans: state of the art
 - Hitlist generation
 - IPv4/IPv6 sensitivity
- Finding IPv6 scanners with DNS backscatter
 - DNS backscatter
 - How to adapt to IPv6
 - Measurement results
 - Sensitivity
 - Detecting IPv6 scanners

How to adapt to IPv6

- Number of queriers is much smaller in v6
 - ML doesn't work well
 - More aggregation (1day -> 1week)
- We directly infer the type of originator
 - Originator's Keyword and AS
 - smtp.foo.bar -> mail
 - Originator-Querier relation
 - All belongs to the same AS -> not network-wide events
 - Matching with Blacklists
 - Spam, scan, etc

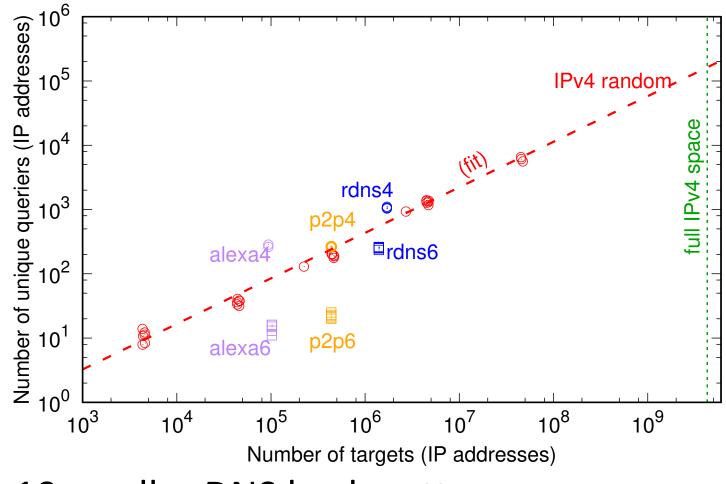
Fukuda, et al. "Who Knocks at the IPv6 Doors? Detecting IPv6 Scanning" In IMC'18, 41 Boston, MA, 2018. (to appear)

Classification

- Major services: Google, MS, FB, Yahoo (by ASN)
- CDN: Akamai,,, (by ASN)
- DNS: Zone files, keyword
- NTP: NTP pool, keyword
- Mail/Web
- Iface: traceroute, keyword
- Tunnels: 6to4, Teledo
- Spam: Blacklist
- Scan: Blacklist, backbone data

- Introduction
- Network scans: state of the art
 - Hitlist generation
 - IPv4/IPv6 sensitivity
- Finding IPv6 scanners with DNS backscatter
 - DNS backscatter
 - How to adapt to IPv6
 - Measurement results
 - Sensitivity
 - Detecting IPv6 scanners

Analyzing IPv6 backscatter sensitivity


- Custom IPv6 network scanner
 - Multiple proto/service (ICMP, TCP22, TCP80, UDP53, UDP123)
 - Uniq source IP for each target
- Local authoritative server

-TTL = 1s

• Three hitlists

Label	# addrs	Description
Alexa	10k	Alexa 1M; servers
rDNS	1.4M	Reverse DNS
P2P	40k	P2P Bittorrent; clients

V4/V6 backscatter sensitivity

x10 smaller DNS backscatter

Application response

type	icmp6	(ping)	tcp22 (ssh)		tcp80 (web)		udp53 (DNS)		udp123 (NTP)	
queries				•••	1476509	100%	•••			
expected reply	928953	62.9%	410421	27.8%	661182	44.8%	69965	4.7%	140893	9.5%
other reply	145264	9.8%	205446	13.9%	201627	13.7%	672171	45.5%	371044	25.1%
no reply	402292	27.2%	860642	58.3%	613700	41.5%	734373	49.4%	964572	65.3%
expected v4 reply	-	57.8%	-	30.0%	-	35.4%	-	6.3%	-	5.9%

• Source: rDNS

- ICMP6 > tcp80 > tcp22 > udp123 > udp53
- No significant difference between v4 and v6

Backscatter and response

	ic	mp6 (ping)	tcp22 (ssh)		tcp80 (web)		udp53 (DNS)		udp123 (NTP)	
v6 backscatter	1809	(0.12%)	774	(0.05%)	1020	(0.07%)	653	(0.04%)	746	(0.05%)
w/expected reply	1371	75.8% (0.09%)	365	47.2% (0.03%)	597	58.5% (0.04%)	137	21.0% (0.01%)	134	18.0% (0.01%)
w/other reply	44	2.4% (0.002%)	94	$12.1\% \ (0.006\%)$	87	8.5%~(0.006%)	265	$40.6\% \ (0.02\%)$	183	24.5% (0.01%)
w/no reply	394	21.8% (0.03%)	315	40.7% (0.02%)	336	32.9% (0.02%)	251	38.4% (0.02%)	429	57.5% (0.03%)
v4 backscatter	4478	(0.30%)	2731	(0.18%)	3094	(0.21%)	3961	(0.27%)	4045	(0.27%)

- Backscatter: how often firewall logs?
- V4 backscatter is x3-5 larger than v6
- Backscatter with expected reply: ok but logged

- Introduction
- Network scans: state of the art
 - Hitlist generation
 - IPv4/IPv6 sensitivity
- Finding IPv6 scanners with DNS backscatter
 - DNS backscatter
 - How to adapt to IPv6
 - Measurement results
 - Sensitivity
 - Detecting IPv6 scanners

Datasets

- DNS backscatter:
 - B-root DNS server
 - Full capture (31M uniq querier-originator pairs)
- Backbone: MAWI traffic repository
 - Transit link in AS2500 (WIDE)
 - Tcpdump in 15 min each day
- Darknet: SINET darknet

- v6 /37 advertised from AS2907 (SINET)

Classification results (B-root)

	Count	%
Category	(mean/week)	total
Services:		
Content Provider	4722	70.24
Facebook	3653	54.34
Google	727	10.82
Microsoft	329	4.89
Yahoo	13	0.19
CDN	286	4.25
Well-known service	815	12.12
DNS	337	5.01
NTP	414	6.16
mail (SMTP)	42	0.62
web (HTTP)	22	0.33
Minor service	268	3.99
other services	83	1.23
qhost	185	2.75
Routers:		
Router	288	4.28
iface	256	3.81
near-iface	32	0.48
Tunnel	216	3.21
Teredo/6to4	207	3.08
tor	9	0.12
Potential Abuse:		
Abuse	128	1.90
spam	17	0.25
scan	16	0.24
unknown (potential abuse)	95	1.41
Total	6723	100.00

Classification results (B-root)

Count	%
an/week)	total
4722	70.24
3653	54.34
727	10.82
329	4.89
13	0.19
286	4.25
815	12.12
337	5.01
414	6.16
42	0.62
22	0.33
268	3.99
83	1.23
185	2.75
288	4.28
256	3.81
32	0.48
216	3.21
207	3.08
9	0.12
128	1.90
17	0.25
16	0.24
95	1.41
6723	100.00
-	an/week) 4722 3653 727 329 13 286 815 337 414 42 22 268 83 185 288 256 32 216 207 9 128 17 16

Scanners confirmed at MAWI

	IP		MAWI		Backscatter	Dark	ASN	info
		#days	port	scan type	#weeks	#weeks		
(a)	2001:48e0:205:2::/64	6	TCP80	Gen	1 (5)	1	40498	New Mexico Lambda Rail
(b)	2a02:418:6a04:178::/64	2	ICMP	rand IID	2 (4)	0	29691	Nine, CH
(c)	2a02:c207:3001:8709::/64	2	TCP80	rand IID	2 (2)	0	51167	Contabo, DE
(d)	2a03:f80:40:46::/64	2	ICMP	rDNS	2 (3)	0	5541	ADNET-Telecom, RO
(e)	2405:4800:103:2::/64	2	ICMP	rDNS	0 (4)	0	18403	FPT-AS-AP, VN
(f)	2a03:4000:6:e12f::/64	1	ICMP	rDNS	0 (0)	0	197540	NETCUP-GmbH, DE
(g)	2800:a4:c1f:6f01::/64	1	ICMP	rDNS	0 (0)	0	6057	ANTEL, UY

- <u>4 scanners</u> are detected both MAWI and backscatter
- <u>3 small scanners</u> are missed in backscatter
- Darknet only finds 1 scanner

Scanners confirmed at MAWI

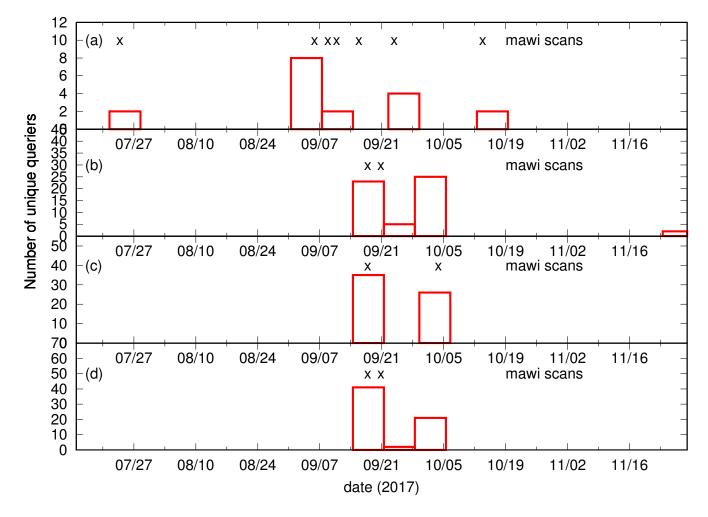
Research scanner @ Berkeley

IP	IP MAWI			Backscatter	Dark	ASN	info
	#days	port	scan type	#weeks	#weeks		
2001:48e0:205:2::/64	6	TCP80	Gen	1 (5)	1	40498	New Mexico Lambda Rail
2a02:418:6a04:178::/64	2	ICMP	rand IID	2 (4)	0	29691	Nine, CH
2a02:c207:3001:8709::/64	2	TCP80	rand IID	2 (2)	0	51167	Contabo, DE
2a03:f80:40:46::/64	2	ICMP	rDNS	2 (3)	0	5541	ADNET-Telecom, RO
2405:4800:103:2::/64	2	ICMP	rDNS	0 (4)	0	18403	FPT-AS-AP, VN
2a03:4000:6:e12f::/64	1	ICMP	rDNS	0 (0)	0	197540	NETCUP-GmbH, DE
2800:a4:c1f:6f01::/64	1	ICMP	rDNS	0 (0)	0	6057	ANTEL, UY
	2001:48e0:205:2::/64 2a02:418:6a04:178::/64 2a02:c207:3001:8709::/64 2a03:f80:40:46::/64 2405:4800:103:2::/64 2a03:4000:6:e12f::/64	#days 2001:48e0:205:2::/64 6 2a02:418:6a04:178::/64 2 2a02:c207:3001:8709::/64 2 2a03:f80:40:46::/64 2 2405:4800:103:2::/64 2 2a03:4000:6:e12f::/64 1	#daysport2001:48e0:205:2::/646TCP802a02:418:6a04:178::/642ICMP2a02:c207:3001:8709::/642TCP802a03:f80:40:46::/642ICMP2405:4800:103:2::/642ICMP2a03:4000:6:e12f::/641ICMP	#daysportscan type2001:48e0:205:2::/646TCP80Gen2a02:418:6a04:178::/642ICMPrand IID2a02:c207:3001:8709::/642TCP80rand IID2a03:f80:40:46::/642ICMPrDNS2405:4800:103:2::/642ICMPrDNS2a03:4000:6:e12f::/641ICMPrDNS	#daysportscan type#weeks2001:48e0:205:2::/646TCP80Gen1 (5)2a02:418:6a04:178::/642ICMPrand IID2 (4)2a02:c207:3001:8709::/642TCP80rand IID2 (2)2a03:f80:40:46::/642ICMPrDNS2 (3)2405:4800:103:2::/642ICMPrDNS0 (4)2a03:4000:6:e12f::/641ICMPrDNS0 (0)	#daysportscan type#weeks#weeks2001:48e0:205:2::/646TCP80Gen1 (5)12a02:418:6a04:178::/642ICMPrand IID2 (4)02a02:c207:3001:8709::/642TCP80rand IID2 (2)02a03:f80:40:46::/642ICMPrDNS2 (3)02405:4800:103:2::/642ICMPrDNS0 (4)02a03:4000:6:e12f::/641ICMPrDNS0 (0)0	#daysportscan type#weeks#weeks2001:48e0:205:2::/646TCP80Gen1 (5)1404982a02:418:6a04:178::/642ICMPrand IID2 (4)0296912a02:c207:3001:8709::/642TCP80rand IID2 (2)0511672a03:f80:40:46::/642ICMPrDNS2 (3)055412405:4800:103:2::/642ICMPrDNS0 (4)0184032a03:4000:6:e12f::/641ICMPrDNS0 (0)0197540

- 4 scanners are detected both MAWI and backscatter
- 3 small scanners are missed in backscatter
- Darknet only finds 1 scanner

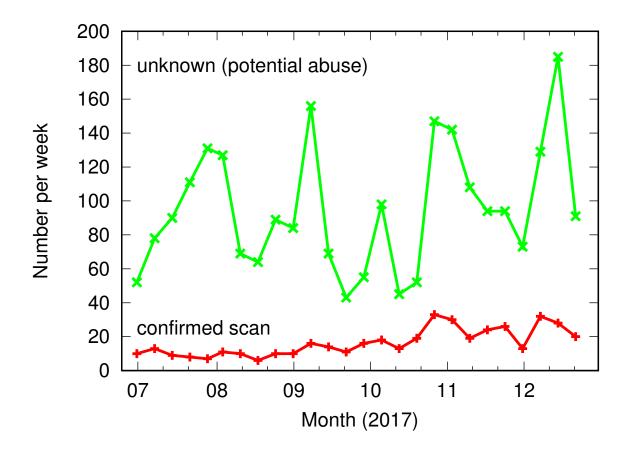
Scanners confirmed at MAWI

	IP		MAWI		Backscatter	Dark	ASN	info
		#days	port	scan type	#weeks	#weeks		
(a)	2001:48e0:205:2::/64	6	TCP80	Gen	1 (5)	1	40498	New Mexico Lambda Rail
(b)	2a02:418:6a04:178::/64	2	ICMP	rand IID	2 (4)	0	29691	Nine, CH
(c)	2a02:c207:3001:8709::/64	2	TCP80	rand IID	2 (2)	0	51167	Contabo, DE
(d)	2a03:f80:40:46::/64	2	ICMP	rDNS	2 (3)	0	5541	ADNET-Telecom, RO
(e)	2405:4800:103:2::/64	2	ICMP	rDNS	0 (4)	0	18403	FPT-AS-AP, VN
(f)	2a03:4000:6:e12f::/64	1	ICMP	rDNS	0 (0)	0	197540	NETCUP-GmbH, DE
(g)	2800:a4:c1f:6f01::/64	1	ICMP	rDNS 💦	0 (0)	0	6057	ANTEL, UY

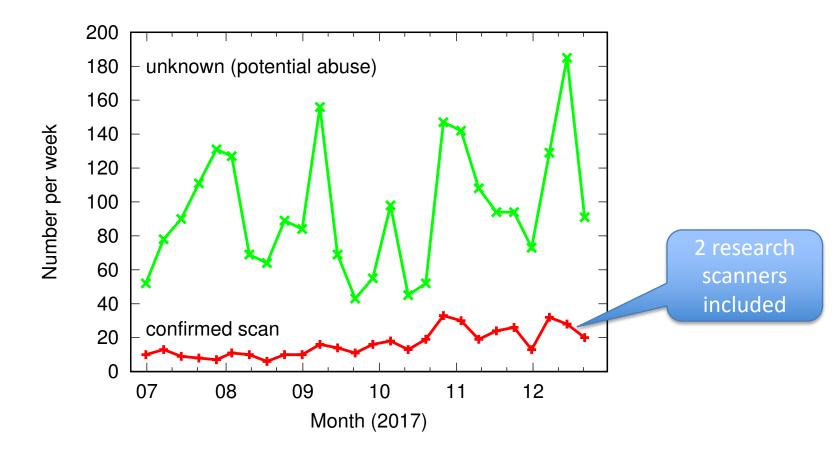

- rDNS hitlists: 4 scanners
- Rand IID hitlists: 2 scanners (e.g., 2001:db8:1::10)
- Generative hitlists: 1 scanner (6Gen)

(Why darknet misses?)

- Current scanners rely on hitlists
 Never scan IP addresses not in hitlists
- Require to register to hitlists
 - Add v4 PTR, A, and AAAA records!
 - Add v6 PTR records!

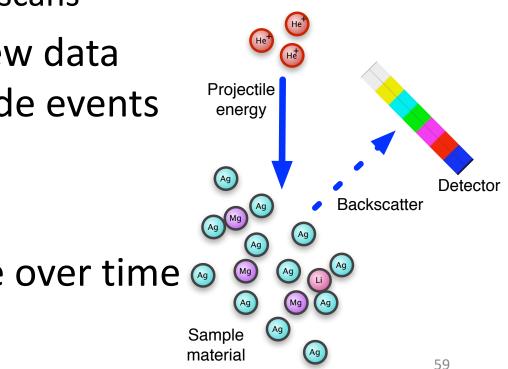


MAWI scan and backscatter


Strong temporal correlation!

Abuse over time

The number of scans increases over time


Abuse over time

The number of scans increases over time

Conclusion

- IPv6 scanning: state of the art
 - Hitlist generation
 - Comparison with IPv4 scans
- DNS backscatter a new data source for Internet-wide events
 - Adapt to IPv6
 - Works well
- IPv6 scanners increase over time

Thanks to

- JSPS Kakenhi Grant (15KK0019, 18H03237)
- Collaborators:
 - John Heidemann (USC/ISI)
 - Yudai Aratsu (U.Tokyo)
- Others:
 - Johan Mazel (ANSSI, FR)
 - Romain Fontugne (IIJ)
 - Kenjiro Cho (IIJ)
 - Yoshinobu Matsuzaki (IIJ)

