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Containers

* A package of an application execution environment
 version-controllable
* portable

* lightweight

* Microservice architecture
* An application (service) runs on a container
* Multiple containers comprise a system
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The beginning of container networking

e A container is a separated namespace in a host OS
* Containers need to connect to other containers, host, and external networks

* The conventional approach: Adapters and Links
 Virtual NICs (veth interface in Linux)
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Overhead of container networking

* Container involves
* virtual NIC (veth)
e virtual bridge and NAT (docker0) in the host network stack

* Network performance degradation

Throughput (Gbps)

degrade throughput by 50%

increase latency by 25%
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State-of-the-art container networking

1. Interface Virtualization

 Directly attaching interfaces to containers (bypassing host network stack)
* macvlan, SR-IOV

2. Optimized Network Stacks
* Reinventing the entire or a part of network stacks
* FreeFlow][1], Cilium][2]

[1] Tianlong Yu, et al., “FreeFlow: High Performance Container Networking”. HotNets’16
[2] Cilium, https://cilium.io/



State-of-the-art: Interface Virtualization

* Bypassing the host network stack

* macvlan achieves comparable
network performance with native host[3]

 Complicating management

e Quter networks must manage container networks

* addressing, tenant separation,
access control, etc

* NAT conceals container networks
from outer networks and infrastructures
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[3] Yang, et al, “Performance of Container Networking Technologies”, HotConNet’17



State-of-the-art: Optimized network stacks

* Using high-speed packet I/O techniques
* FreeFlow uses DPDK and RDMA
e Cilium uses XDP (eBPF)
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State-of-the-art: Optimized network stacks

* Using high-speed packet I/O techniques
* FreeFlow uses DPDK and RDMA
* Cilium uses XDP (eBPF)

* The long data path will be
the next bottleneck

* Protocol processing cost do not disappear

* In Arrakis OS[4], network protocol
processing occupies 100% of
processing cost on a simple
UDP echo server

* It will be more significant bottleneck
in comparison with native hosts
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[4] Simon, et al, “Arrakis: The Operating System is the Control Plane”, OSDI’14



The third approach:
Bypassing container network stacks
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A question: Do containers really need network stacks?

Port forward
docker -p 80:80
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A question: Do containers really need network stacks?
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The third approach:

Bypassing container network stacks, cont’d

* A containeris
 just an application execution environment
* not interested in how packets are delivered
* Then, we can bypass container network stacks

* Network stack separation should be retained
* docker run --net=host cancause

unintended or malicious resource uses Container {
e address, port, protocol, etc B
* A new mechanism is needed Host —

e connecting App on a container to the host
* with proper access control
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The third approach:
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Approach: Socket-Grafting

* Grafting sockets in containers onto sockets in hosts
* A socket-layer communication channel design
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Mechanism: AF_GRAFT

* A new address family for grafting sockets
* Applications in containers create AF_GRAFT sockets

 AF_GRAFT sockets are grafted onto other AF sockets across the network
namespace boundary

App

write(), send() read(), recv()

AF_GRAFT
. socket
Container :




Graft endpoint

* Names for AF_GRAFT sockets in the bind() semantics o ar grarr socket
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AF_GRAFT Socket API

/* Structure describing a graft socket address (endpoint) */
struct sockaddr gr {

__kernel sa family t sgr family;

char sgr epname[AF GRAFT EPNAME MAX];
}i

int sock;
struct sockaddr gr saddr gr;

sock = socket(AF_GRAFT, SOCK _STREAM, IPPROTO_TCP);

saddr gr.sgr family = AF GRAFT;
strncpy(saddr gr.sgr epname, “ep-http”, 7);

bind(sock, (struct sockaddr *)&saddr gr, sizeof(saddr gr));
/* Then, you can use sock as usual TCP sockets */
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Outbound connections

* Dynamic-port graft endpoint
* |t uses randomly selected port numbers == typical client sockets
* For example, mapping ep-out on X.X.X.X:random

sock = socket(AF_GRAFT, SOCK_ STREAM, IPPROTO_TCP);
saddr gr.sgr family = AF GRAFT;
strncpy(saddr gr.sgr epname, “ep-out”, 7);

bind(sock, (struct sockaddr *)&saddr gr, sizeof(saddr gr));

/* Then sock is grafted onto source IP:RandomPort socket*/

connect(sock, (struct sockaddr *)&dst, sizeof(dst));




Implementation

* https://github.com/upa/af-graft, AF_GRAFT kernel module

* no kernel patches (but overwriting an existing AF number, AF_IPX)
e Grafting is implemented as function call

* no buffering, queueing, messaging => minimal overhead!
* A few socket options for practical uses

* A modified iproute2 for configuring the mapping table

ip graft add ep-http type ipv4 addr 10.0.0.1 port 80

ip graft add ep-out type ipv4 addr 10.0.0.2 port dynamic
ip graft del ep-un

ip graft show

v N n»



Existing application with AF_GRAFT

 AF_GRAFT is a new address family

* Applications need source code modifications
* |t is easy because of the familiar socket API, but difficult to deploy

»Overriding system calls by the LD_PRELOAD trick

* $ LD PRELOAD libgraft-hijack.so app
* hijacking functions in shared library

* Hijacking:
1. getaddrinfo()
2. socket(), bind(), and connect()

* to convert address family-dependent socket operations into AF_GRAFT-
capable ones



getaddrinfo()

* It was carefully designed to achieve AF-independent codes
* Our modified getaddrinfo() can return AF_GRAFT and sockaddr_gr

* However, unfortunately, this is not the case in practical applications...

/* IPvd */
if (server res->ai family == AF_ INET) {
. make ipv4 socket ...
}
/* IPv6 */
else if (server res->ai family == AF INET6) {
. make ipv6 socket ...
}
/* Unknown protocol */
else { 2
errno = EAFNOSUPPORT; \Eéy
return -1;
}

from iperf3

[5] Jun-ichiro itojun Itoh, KAME Project, “Implementing AF-independent application”, http://www.kame.net/newsletter/19980604/
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Hijacking socket() and bind()

* Hijacked socket()
* returns AF_GRAFT sockets instead of AF_INET/INET6

* Hijacked bind()
* uses sockaddr_gr instead of sockaddr_in/in6

* An env variable specifies which sockaddr convert to which sockaddr_gr
e GRAFT_CONV_PAIRS="0.0.0.0:80=ep-http”



Application libgraft-hijack Container’s Host

in Container network stack network stack
l :
socket(AF_INET) — -
. socket(AF_GRAFT) — -
: create

AF_GRAFT socket

socket descriptor
returns

|
bind(sockaddr_in) —

. bind(sockaddr_gr) —

create o
host socket

- socket(AF_INET)

!

bind(sockaddr_in)

—

Graftingégocket

bind() returns

|
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bind() before connect() for outbound connections

1. connect() does not need to call bind()
2. But, AF_GRAFT requires bind() to determine host sockets

v The hijacked connect() calls bind before connect()
* sendto() and sendmsg() are also hijacked in the same manner



Evaluation

* Throughput and latency

Baseline performance

* iperf3 and sockperf Docker
e HTTP server ] Container

* NGINX and siege | Microservice App i?:ilé;;is;
° Message Queue Architecture I

* Zero MQ

* Networking S -
* native host 40Gbps link
e dockerO (NAT)
o AF_GRAFT Host:

Linux 4.4.0, Intel Core i7-3770K 3.5GHz CPU,

* with libgraft-hijack.so
32GB memory, Mellanox ConnectX-4 LX 40Gbps NIC
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Throughput (Gbps)
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 AF_GRAFT successfully mitigates the degradation

* Container to container communication via AF_GRAFT is the same as the
communication via the loopback interface
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* As well as the throughput test, AF__GRAFT also mitigates degradation from
the latency perspective



Transaction rate (Ktps)

HTTP server benchmark
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Throughput (Gbps)

Message Queue benchmark
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Limitations

* The LD_PRELOAD trick is not applicable to

* Statically linked libraries
* Golang that implements syscall without libc

 AF_GRAFT does not improve network stack performance
* It never outperforms the performance of native hosts

* Network-sensitive applications
e e.g., Container-based NFV



Conclusion

* Socket-Grafting
e Containers with network-insensitive applications do not need network stacks
* Bypassing container’s network stack by exploiting the socket layer
* A new address family, called AF_GRAFT, as a practical mechanism for grafting

* The evaluation results demonstrated
* Mitigating the network performance degradation due to the long data path
e HTTP: 10-40% throughput improvement
e ZeroMQ: up to doubled the throughput and 30% shorter latenct



ToDo

* Integrating AF_GRAFT into Docker

* Docker network driver plugin?

* Option like -p?

 We need comments or partners implementing such plugins ;)
* Integrating AF_GRAFT into Kubernetes

* More complicated due to the service IP abstraction and load balancing
 The Container Network Interface (CNI) focuses on the traditional abstraction (?)

* Go Go Netdev 0x13!



