Containers Do Not Need Network Stacks

Ryo Nakamura
iijlab seminar 2018/10/16

Based on Ryo Nakamura, Yuji Sekiya, and Hajime Tazaki. 2018. “Grafting Sockets for
Fast Container Networking”. In ANCS ’18: Symposium on Architectures for Networking
and Communications Systems, July 23—-24, 2018, Ithaca, NY, USA.

Containers

* A package of an application execution environment
 version-controllable
* portable

* lightweight

* Microservice architecture
* An application (service) runs on a container
* Multiple containers comprise a system

(
[
[
[
I
[
[
[
I
[
[
\

Container

App

Container

Code

App

Container

Library

Code

App

Container

Container

App

Code

Library

Library

Code

App

Container

Library

Code

App

Library

Code

Library

e o o o o e e e e e e e M M e e mmm M e e Gmm M e e Mmm M e e Mmm M e e mmm M e e Mmm M e e Mmm M e e Mmm M e e Mmm S e e mmm S e e e

&

docker

3

The beginning of container networking

e A container is a separated namespace in a host OS
* Containers need to connect to other containers, host, and external networks

* The conventional approach: Adapters and Links
 Virtual NICs (veth interface in Linux)

Guest OS Guest OS Container Container
App App App App
| | | |
Network Network Network Network
Stack Stack Stack Stack
| | | |
! !
A A vNIC vNIC vNIC [vNIC
PP PP Hardware
) L, RRRRPRRRIRRRRT ™= Namespace- ="~~~ -~~~ ~"~"=“~“~~=~=7-
Virtualization
Network Stack Network Stack Network Stack
I I I
Host Kernel Host Kernel Host Kernel
oSt Remne NIC | ostAerne NIC | osterne NIC |

Native Host VM Network Stack Architecture Container Network Stack Architecture

Overhead of container networking

* Container involves
* virtual NIC (veth)
e virtual bridge and NAT (docker0) in the host network stack

* Network performance degradation

Throughput (Gbps)

degrade throughput by 50%

increase latency by 25%

40
35
30
25
20
15
10
[e
0

T

4=
| N S N S SN SN

Host Container

latency (usec)

H

O - NDNWP,A,OIONOO®OO
r—r T 1T T T T T"7

N N R TN TN TR S |

Container

App

Network
Stack

App | VNIC

Bridge/NAT

TCP/IP Network Stack

~— QOverhead

Host Container

Physical NIC

CDF

The long data path

. . . . A h
* from an application in container to NIC o
: : : TCP/UDP
* Time to transmit a packet INCreases II; _ Container
» Throughput and latency are degraded ——
1 T T : 70 T VNIC]
oor |~ 1 60 | 1
0.8 || - -
0.7 Egfd R __50r 7 _ VNJC o
82 Sy | ERPLES i Aep Ethernet Bridge
I O - p _
R I i € 30 a TCP/UDP
g'g I G i T ok T . | Host = -
0:2 T | C Host y 1 ”2 ”2 — NAT
01 | o ont?n1er “““ o 7 107 | || Ethernet Ethernet |
0 0 40 80 120 160 ° Host Container
depth NIC NIC
Depth of called functions Elapsed time in

from udp sendmsg() udp_sendmsg()

State-of-the-art container networking

1. Interface Virtualization

 Directly attaching interfaces to containers (bypassing host network stack)
* macvlan, SR-IOV

2. Optimized Network Stacks
* Reinventing the entire or a part of network stacks
* FreeFlow][1], Cilium][2]

[1] Tianlong Yu, et al., “FreeFlow: High Performance Container Networking”. HotNets’16
[2] Cilium, https://cilium.io/

State-of-the-art: Interface Virtualization

* Bypassing the host network stack

* macvlan achieves comparable
network performance with native host[3]

 Complicating management

e Quter networks must manage container networks

* addressing, tenant separation,
access control, etc

* NAT conceals container networks
from outer networks and infrastructures

Container -

— Container

- Bridge

- NAT

Aep
TCP/UDP
P
Etherrnet
erIC
App VNIC
TCP/rUDP Etherrnet
IP
Etherrnet |E’
VNr|C Ethernet
NIC NIC

[3] Yang, et al, “Performance of Container Networking Technologies”, HotConNet’17

State-of-the-art: Optimized network stacks

* Using high-speed packet I/O techniques
* FreeFlow uses DPDK and RDMA
e Cilium uses XDP (eBPF)

Container =

—

Bridge —

NAT -

o=

"~ Container

- Bridge

~NAT

App
TCP/UDP TCP/UDP
P P
Ethernet Ethernet
vNIC vNIC
vNIC vNIC
Ethernet Ethernet
P P
Ethernet Ethernet
NIC NIC

State-of-the-art: Optimized network stacks

* Using high-speed packet I/O techniques
* FreeFlow uses DPDK and RDMA
* Cilium uses XDP (eBPF)

* The long data path will be
the next bottleneck

* Protocol processing cost do not disappear

* In Arrakis OS[4], network protocol
processing occupies 100% of
processing cost on a simple
UDP echo server

* It will be more significant bottleneck
in comparison with native hosts

Container =

Bridge —

there is still the
same overhead due
to the architecture!

NAT -

~ Host

A;l)p
TCP/UDP
P
Etherrnet
erIC
vNIC
Etherrnet A?p
TCP/UDP
IP II;
Etherrnet Etherrnet
NIC NIC

[4] Simon, et al, “Arrakis: The Operating System is the Control Plane”, OSDI’14

The third approach:
Bypassing container network stacks

* A container is ~EF
_ _ _ _ . TCP/UDP
* just an application execution environment P | -Container
* not interested in how packets are delivered Ethernet
vNIC]
Then, we can ass -
e.) e Ca byp Container { App VNr|C ._Bridge
container network stacks B Ethernet |
TCP/UDP
to mitigate the overhead? Host - [15 remb
: = L NAT
u Ethernet Ethernet]
NIC NIC

A question: Do containers really need network stacks?

Port forward
docker -p 80:80

Host To Global Addr User Client
in Host Stack

Container

Nginx Browser)
T , Container has
Network _ : < Network network stack
Stack Bridge and NAT Stack
T T L :
VNIC vNIC | NIC NIC |
Host : To Global Addr User Client
Container in Host Stack
Nginx Browser _
T , Container does not
Network < Network have network stack
Stack Stack
I |
NIC NIC |

A question: Do containers really need network stacks?

Port forward
docker -p 80:80

Container Host To Global Addr User Client
in Host Stack
Nginx Browser)
- I Container has
Network _ : < Network network stack
Stack Bridge and NAT Stack
1 | 1
vNIC | wNniC | NIC
Host : To Global Addr User Client
Container in Host Stack
Nginx Browser)
T r Container does not
Network < Network have network stack
Stack Stack
1 I
NIC — — NIC

12

The third approach:

Bypassing container network stacks, cont’d

* A containeris
 just an application execution environment
* not interested in how packets are delivered
* Then, we can bypass container network stacks

* Network stack separation should be retained
* docker run --net=host cancause

unintended or malicious resource uses Container {
e address, port, protocol, etc B
* A new mechanism is needed Host —

e connecting App on a container to the host
* with proper access control

Aep
TCP/UDP
P
Etherrnet
erIC
App erIC
i M Ethernet
TCP/UDP
II; P
Etherrnet Etherrnet
NIC NIC

—_

- Bridge

~NAT

— Container

The third approach:

Bypassing container network stacks, cont’d

* A containeris
 just an application execution environment
* not interested in how packets are delivered
* Then, we can bypass container network stacks

* Network stack separation should be retained

 docker run --net=host can cause

: L Container
unintended or malicious resource u {

e address, port, protocol, etc Socket o
* A new mechanism is needed Layer! Host -
* connecting App on a containertot

* with proper access control

Aep
TCP/UDP
P
Etherrnet
erIC
App erIC
il S Ethernet
TCP/UDP
II; P
Etherrnet Etherrnet
NIC NIC

—_

- Bridge

~NAT

— Container

Approach: Socket-Grafting

* Grafting sockets in containers onto sockets in hosts
* A socket-layer communication channel design

o Container Host
e graft =1 2= K9 D, BHET D —
Application
v'One Network stack on the data path SR ‘
| socket layer]-- ------- >[socket layer |
v'Independent from network stack | 1
implementations TCP/UDP TCP/UDP
P s IP
Ethernet Ethernet
! |
Virtual NIC | Physical NIC |
|

<+— Data path of default container networking
<+--= Data path of socket-grafting

Mechanism: AF_GRAFT

* A new address family for grafting sockets
* Applications in containers create AF_GRAFT sockets

 AF_GRAFT sockets are grafted onto other AF sockets across the network
namespace boundary

App

write(), send() read(), recv()

AF_GRAFT
. socket
Container :

Graft endpoint

* Names for AF_GRAFT sockets in the bind() semantics o ar grarr socket
® Arbitra ry StringS O AF_INET/INET6/UNIX socket

:] Endpoint
° GRAFT <-> HOSt endeInt mapplng Container 1 Container 2 Container 3
° AF_G RAFT manages the Application Application Application
mapping table per container (g
. : . O) ®
preventing misuse of S ép% L
the host namespace : 1 ;
! P B l
Graft endpoint | Host endpoint & é nE 6 &
ep-http 10.0.0.1:80 10.0.0.1:80] |10.0.0.1:8080}|[2001:db8: :beef]:8080f | /tmp/un-sk
ep4d 10.0.0.1:8080 Network Stack File System
ep6 [2001:db8::beef]:8080 $
ep-un /tmp/un-sk Physical NIC i

AF_GRAFT Socket API

/* Structure describing a graft socket address (endpoint) */
struct sockaddr gr {

__kernel sa family t sgr family;

char sgr epname[AF GRAFT EPNAME MAX];
}i

int sock;
struct sockaddr gr saddr gr;

sock = socket(AF_GRAFT, SOCK _STREAM, IPPROTO_TCP);

saddr gr.sgr family = AF GRAFT;
strncpy(saddr gr.sgr epname, “ep-http”, 7);

bind(sock, (struct sockaddr *)&saddr gr, sizeof(saddr gr));
/* Then, you can use sock as usual TCP sockets */

18

Outbound connections

* Dynamic-port graft endpoint
* |t uses randomly selected port numbers == typical client sockets
* For example, mapping ep-out on X.X.X.X:random

sock = socket(AF_GRAFT, SOCK_ STREAM, IPPROTO_TCP);
saddr gr.sgr family = AF GRAFT;
strncpy(saddr gr.sgr epname, “ep-out”, 7);

bind(sock, (struct sockaddr *)&saddr gr, sizeof(saddr gr));

/* Then sock is grafted onto source IP:RandomPort socket*/

connect(sock, (struct sockaddr *)&dst, sizeof(dst));

Implementation

* https://github.com/upa/af-graft, AF_GRAFT kernel module

* no kernel patches (but overwriting an existing AF number, AF_IPX)
e Grafting is implemented as function call

* no buffering, queueing, messaging => minimal overhead!
* A few socket options for practical uses

* A modified iproute2 for configuring the mapping table

ip graft add ep-http type ipv4 addr 10.0.0.1 port 80

ip graft add ep-out type ipv4 addr 10.0.0.2 port dynamic
ip graft del ep-un

ip graft show

v N n»

Existing application with AF_GRAFT

 AF_GRAFT is a new address family

* Applications need source code modifications
* |t is easy because of the familiar socket API, but difficult to deploy

»Overriding system calls by the LD_PRELOAD trick

* $ LD PRELOAD libgraft-hijack.so app
* hijacking functions in shared library

* Hijacking:
1. getaddrinfo()
2. socket(), bind(), and connect()

* to convert address family-dependent socket operations into AF_GRAFT-
capable ones

getaddrinfo()

* It was carefully designed to achieve AF-independent codes
* Our modified getaddrinfo() can return AF_GRAFT and sockaddr_gr

* However, unfortunately, this is not the case in practical applications...

/* IPvd */
if (server res->ai family == AF_ INET) {
. make ipv4 socket ...
}
/* IPv6 */
else if (server res->ai family == AF INET6) {
. make ipv6 socket ...
}
/* Unknown protocol */
else { 2
errno = EAFNOSUPPORT; \Eéy
return -1;
}

from iperf3

[5] Jun-ichiro itojun Itoh, KAME Project, “Implementing AF-independent application”, http://www.kame.net/newsletter/19980604/

22

Hijacking socket() and bind()

* Hijacked socket()
* returns AF_GRAFT sockets instead of AF_INET/INET6

* Hijacked bind()
* uses sockaddr_gr instead of sockaddr_in/in6

* An env variable specifies which sockaddr convert to which sockaddr_gr
e GRAFT_CONV_PAIRS="0.0.0.0:80=ep-http”

Application libgraft-hijack Container’s Host

in Container network stack network stack
l :
socket(AF_INET) — -
. socket(AF_GRAFT) — -
: create

AF_GRAFT socket

socket descriptor
returns

|
bind(sockaddr_in) —

. bind(sockaddr_gr) —

create o
host socket

- socket(AF_INET)

!

bind(sockaddr_in)

—

Graftingégocket

bind() returns

|

24

bind() before connect() for outbound connections

1. connect() does not need to call bind()
2. But, AF_GRAFT requires bind() to determine host sockets

v The hijacked connect() calls bind before connect()
* sendto() and sendmsg() are also hijacked in the same manner

Evaluation

* Throughput and latency

Baseline performance

* iperf3 and sockperf Docker
e HTTP server] Container

* NGINX and siege | Microservice App i?:ilé;;is;
° Message Queue Architecture I

* Zero MQ

* Networking S -
* native host 40Gbps link
e dockerO (NAT)
o AF_GRAFT Host:

Linux 4.4.0, Intel Core i7-3770K 3.5GHz CPU,

* with libgraft-hijack.so
32GB memory, Mellanox ConnectX-4 LX 40Gbps NIC

26

Throughput (Gbps)

Throughput

40
35
30
25
20
15
10

Transmit
[[
T T
L Tl . . l
N & R L I T
L

Host GRAFT NAT

Throughput (Gbps)

40
35
30
25
20
15
10

Receive
| |
T
I = | N
e e e
ey .- Il

Host GRAFT NAT

 AF_GRAFT successfully mitigates the degradation

* Container to container communication via AF_GRAFT is the same as the
communication via the loopback interface

Throughput (Gbps)

80
70
60
50
40
30
20
10

Container to Container
on the same host

I I
L e -

GRAFT Bridge

27

TCP UDP
10 l I I 10 T T
Q [T - 7 Q [7
T

R N SRR I R - I § - R
o [== i o [e P i
L = = : 2 st :
S GRS . S SR B B 7]
S 40P R 7 S 40P U y
s sk - s sk -

2 R 7 2 7Rl 7

IR N N 7 IR B N 7

0 0

Host GRAFT NAT Host GRAFT NAT

* As well as the throughput test, AF__GRAFT also mitigates degradation from
the latency perspective

Transaction rate (Ktps)

HTTP server benchmark

50 concurrent sessions Increased
by 40%
30 I I I i | | Docker
- GET Container
. W

20 T
15 I ‘
10 Host Host

5

0

64 256 1K 4K 16K 64K256K 1M 4M 16M 64M
File size (byte)

29

Throughput (Gbps)

Message Queue benchmark

40
35
30
25
20
15
10

5

0

approximately
doubled

.‘L\-.-ﬁ—. 4

RX and
measured

Docker
Container

X

zmq app |+

64

128 256 512

1K 2K 4K 8K 16K 32K 64K 128K 256K
Message size (Byte)

!

Zmq app

¥

Host

Host

30

Limitations

* The LD_PRELOAD trick is not applicable to

* Statically linked libraries
* Golang that implements syscall without libc

 AF_GRAFT does not improve network stack performance
* It never outperforms the performance of native hosts

* Network-sensitive applications
e e.g., Container-based NFV

Conclusion

* Socket-Grafting
e Containers with network-insensitive applications do not need network stacks
* Bypassing container’s network stack by exploiting the socket layer
* A new address family, called AF_GRAFT, as a practical mechanism for grafting

* The evaluation results demonstrated
* Mitigating the network performance degradation due to the long data path
e HTTP: 10-40% throughput improvement
e ZeroMQ: up to doubled the throughput and 30% shorter latenct

ToDo

* Integrating AF_GRAFT into Docker

* Docker network driver plugin?

* Option like -p?

 We need comments or partners implementing such plugins ;)
* Integrating AF_GRAFT into Kubernetes

* More complicated due to the service IP abstraction and load balancing
 The Container Network Interface (CNI) focuses on the traditional abstraction (?)

* Go Go Netdev 0x13!

