TEEを中心とするCPUセキュリティ 機能の動向 (RISC-V, ARM, etc)

国立研究開発法人 産業技術総合研究所 サイバーフィジカルセキュリティ研究センター 須崎有康

Do you know TEE?

- I asked same question at RISC-V Day Tokyo 2018 and MICRO51 RISC-V workshop 2018.
- Only 10% attendees know it.

Do you know there words?

- Real Product
 - TPM (Trusted Platform Module)
 - ARM TrustZone
 - ARM SCP (System Co Processor)
 - Intel SMM (System Management Mode)
 - Intel TXT (Trusted Execution Technology)
 - Intel SGX (Software Guarded Extension)
 - Intel ME (Management Engine)
 - AMD PSP (Platform Security Processor)
 - Google Titan
 - MS Azure Pluton
 - Apple Secure Enclave
 - Apple T2

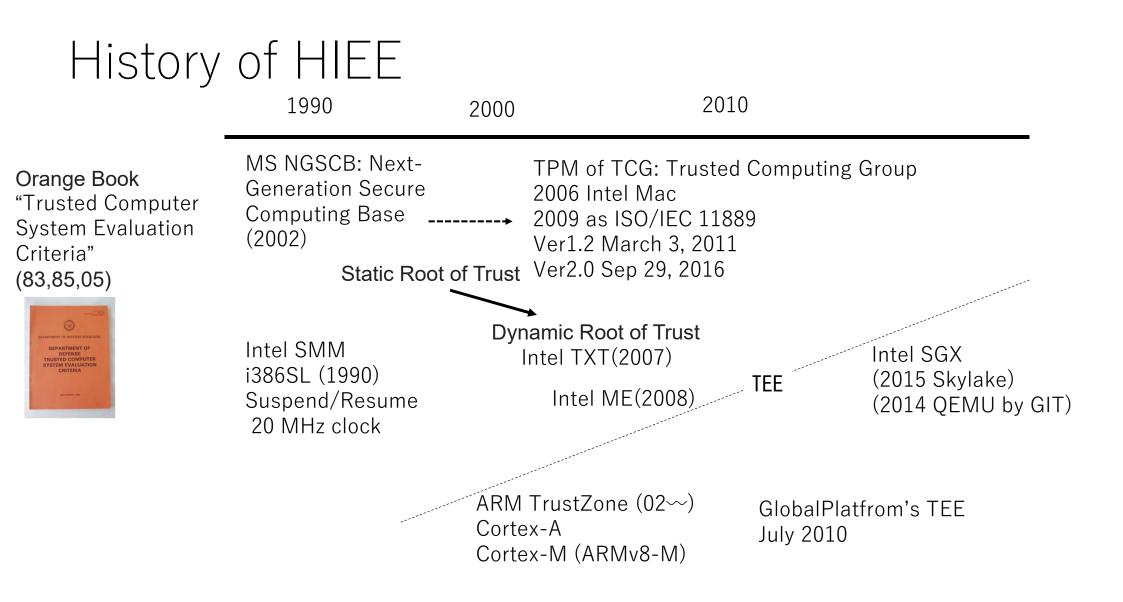
- Research *
 - IBM 4765 Secure Coprocessor
 - FIPS 140-2 level 4
 - Wikipeida: FIPS 140-2 Level 4 makes the physical security requirements more stringent, and requires robustness against environmental attacks.
 - MIT Aegis Secure Processor [ICS'03]
 - MIT Sanctum [USENIX Sec'15]

* Secure Processors Part I: Background, Taxonomy for Secure Enclaves and Intel SGX Architecture [2017, Srinivas Devadas]

Contents

- What is CPU Security?
- What is TEE?
- Implementation
- Related topic (TEEP)
- Intel ME, Google NERF, Google Titan, MS Azure, etc. (Messy)

Why is CPU Security needed?


- Application is not trustable.
 - Quality is not managed.
- OS kernel is not trustable.
 - Too large for TCB.
 - Security function (e.g., Reference Monitor) is a part of OS.
 - Hardware isolation (privilege) is not enough.
- Hypervisor is not trustable.
 - Hardware isolation (virtualization) is not enough.

CPU which runs apps, kernel, and hypervisor is not trustful.

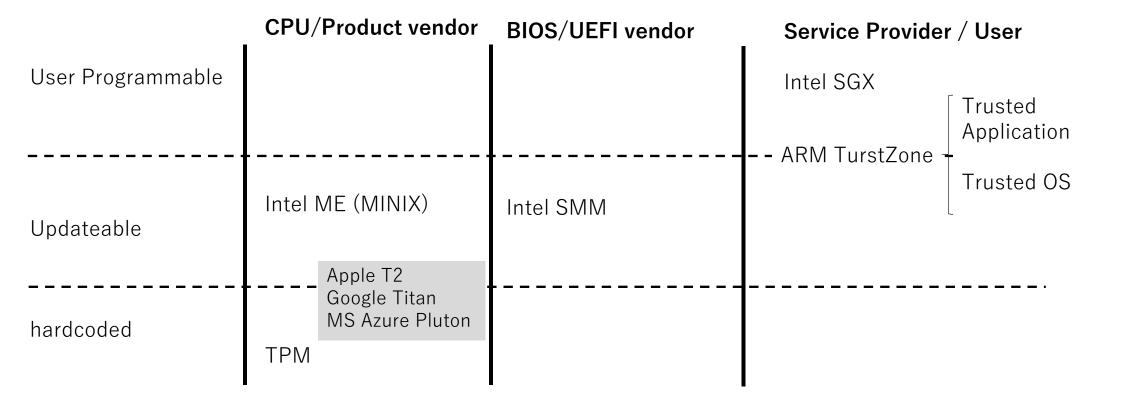
HIEE (Hardware-assisted Isolated Execution Environments) is required.

* SoK : A Study of Using Hardware-assisted Isolated Execution Environments for Security[HASP16]

Comparison of HIEE

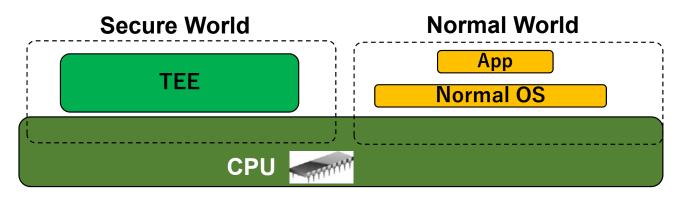
Table 2: Summary of HIEEs

	\mathbf{SMM}	ME	\mathbf{PSP}	DRTM	SGX	TrustZone
Timelines	~1993	$^{\sim}2007$	$\tilde{2013}$	$^{\sim}2005$	~2013	~2002
Supported hardware	$\mathbf{x86}$	Intel	AMD	Intel/AMD	Intel	ARM
Sharing main CPU	\checkmark			\checkmark	\checkmark	\checkmark
High privilege	\checkmark	\checkmark	\checkmark			\checkmark
Zero overhead		\checkmark	\checkmark			
Designed for security		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark


From: SoK : A Study of Using Hardware-assisted Isolated Execution Environments for Security[HASP16]

Comparison of CPU mechanism

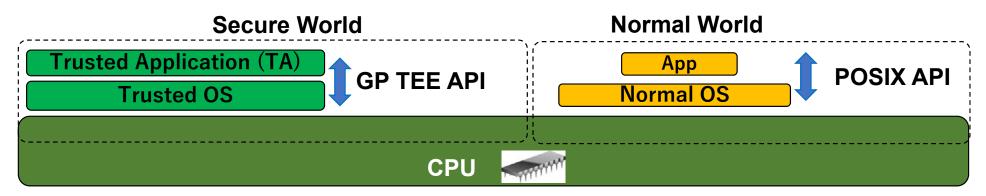
Attack	TrustZone	TPM	TPM+TXT	SGX	Aegis	Sanctum
Malicious	N/A (secure world is	N/A (The whole	N/A (Does not al-	Access checks on	Security kernel sepa-	Access checks on
containers	trusted)	computer is one	low concurrent con-	TLB misses	rates containers	TLB misses
(direct prob-		container)	tainers)			
ing)						
Malicious OS	Access checks on	N/A (OS measured	Host OS preempted	Access checks on	Security kernel mea-	Access checks on
(direct probing)	TLB misses	and trusted)	during late launch	TLB misses	sured and isolated	TLB misses
Malicious	Access checks on	N/A (Hypervi-	Hypervisor pre-	Access checks on	N/A (No hypervisor	Access checks on
hypervisor	TLB misses	sor measured and	empted during late	TLB misses	support)	TLB misses
(direct probing)		trusted)	launch			112 110000
Malicious	N/A (firmware is a	CPU microcode mea-	SINIT ACM signed	SMM handler is sub-	N/A (Firmware is not	Firmware is mea-
firmware	part of the secure	sures PEI firmware	by Intel key and mea-	ject to TLB access	active after booting)	sured and trusted
	world)		sured	checks	×	
Malicious	N/A (secure world is	N/A (Does not al-	N/A (Does not al-	×	^	Each enclave its gets
containers	trusted)	low concurrent con-	low concurrent con-			own cache partition
(cache timing)		tainers)	tainers)			
Malicious OS	Secure world has own	N/A (OS measured	Host OS preempted	×	×	Per-enclave page ta-
(page fault	page tables	and trusted)	during late launch			bles
recording)		1111 /00				I
Malicious OS	×	N/A (OS measured	Host OS preempted	×	×	Non-enclave software
(cache timing)		and trusted)	during late launch			uses a separate cache
DMA from mali-	On-chip bus bounces	×	IOMMU bounces	IOMMU bounces		partition
cious peripheral	secure world accesses		DMA into TXT	DMA into PRM	Equivalent to physi-	MC bounces DMA
			memory range		cal DRAM access	outside allowed range
Physical DRAM	Secure world limited	×	×	Undocumented mem-	DRAM encryption	×
read	to on-chip SRAM			ory encryption engine		
Physical DRAM	Secure world limited	×	×	Undocumented mem-	HMAC of address,	×
write Physical DRAM	to on-chip SRAM Secure world limited			ory encryption engine	data, timestamp	
rollback write	to on-chip SRAM	×	×	Undocumented mem-	Merkle tree over	×
				ory encryption engine	HMAC timestamps	0
Physical DRAM	Secure world in on-	×	×	×	×	×
address reads	chip SRAM	Mathematic (CDU	Matherine (CB)	(IDU able as done		^
Hardware TCB	CPU chip package	Motherboard (CPU,	Motherboard (CPU,	CPU chip package	CPU chip package	
size	0	TPM, DRAM, buses)	TPM, DRAM, buses)	And Real from the second state	or o only provide	CPU chip package
Software TCB	Secure world	All software on the	SINIT ACM + VM	Application module	Application module	
size	(firmware, OS,	computer	(OS, application)	+ privileged module		Application module
	application)			+ containers	+ security kernel	+ security monitor


From: Secure Processors Part I: Background, Taxonomy for Secure Enclaves and Intel SGX Architecture [2017, Srinivas Devadas]

Stakeholder map

What is TEE?

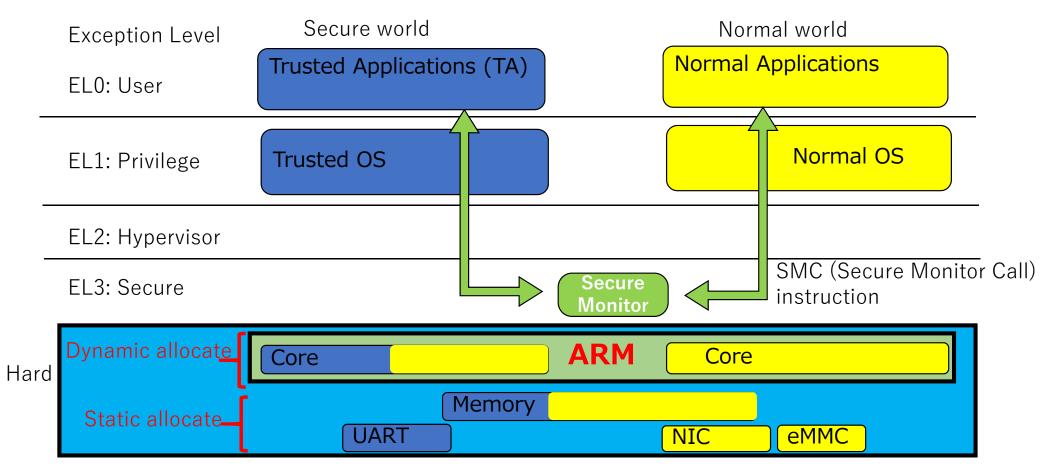
- TEE: Trusted Execution Environment.
 - TEE separates computing world into "normal" and "secure".
 - Secure world is used to run a critical code (e.g., authentication, DRM, etc).


- GlobalPlatform defines TEE specification.
 - <u>https://globalplatform.org/technical-committees/trusted-execution-environment-tee-committee/</u>

GlobalPlatfrom TEE

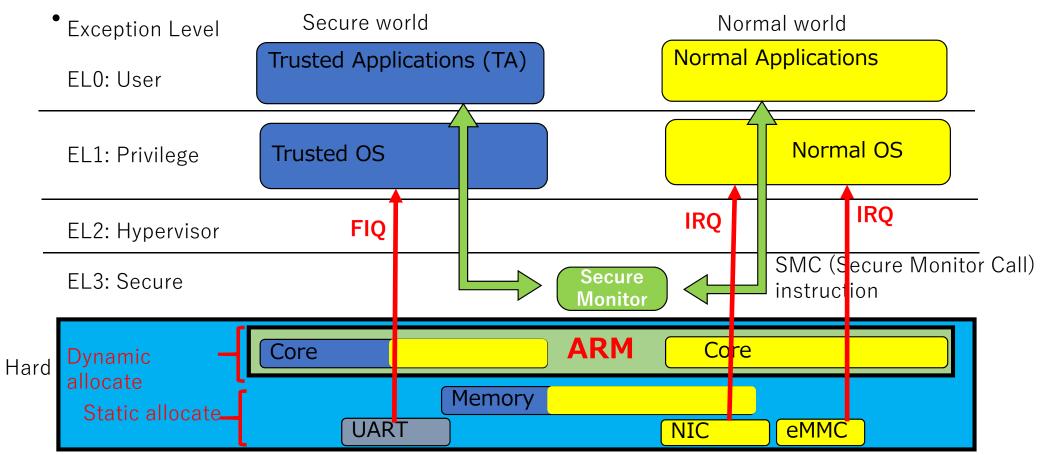
- Requirements:
 - <u>https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Trusted-Execution-Environment-15May2018.pdf</u>
- 1. Isolation from the Rich OS
 - all trusted applications and their related data are separated from the rich environment.
- 2. Isolation from other TAs
 - TAs are isolated within the TEE, and from the TEE itself.
- 3. Application management control
 - any modification of the TA and the TEE can only be performed by the authenticated entity.
- 4. Identification and binding
 - where the boot process is bound to the System-onChip (SoC), enforcing authenticity and integrity of TEE firmware and TAs.
- 5. Trusted storage
 - TA and TEE data is stored security to ensure integrity, confidentiality and binding to the TEE (or anticloning).
- 6. Trusted access to peripherals
 - the TEE offers APIs access to trusted peripherals such as the screen, biometric sensors and SEs, under the control of the TEE.
- 7. State of the art cryptography
 - random number generation, cryptography and monotonic time stamps are key assets for value added services.

Privileges for TEE

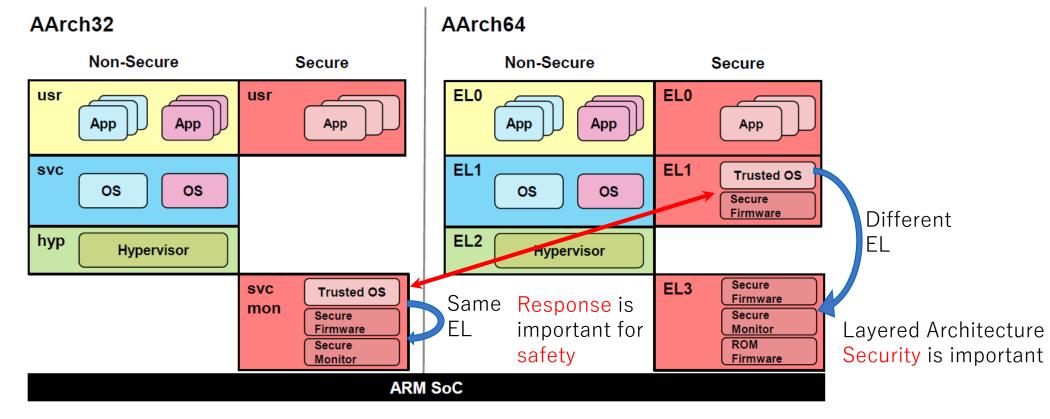

- Global Platform's TEE specification assumes plural privileges on both worlds.
 - Normal world runs normal applications on a normal OS.
 - Secure world runs trusted applications (TAs) on a trusted OS.

- ARM Trust Zone offers same privileges to normal and secure world.
- Intel SGX has only one privilege (enclave).
 - Enclave is different from Ring architecture.

Trusted OS on ARM Trust Zone

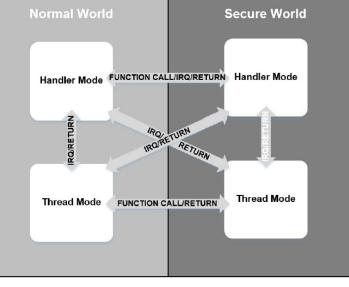

• GlobalPlatform model

Trusted OS on ARM Trust Zone


GlobalPlatform model

• Interrupt is also separated. (depending on configurations)

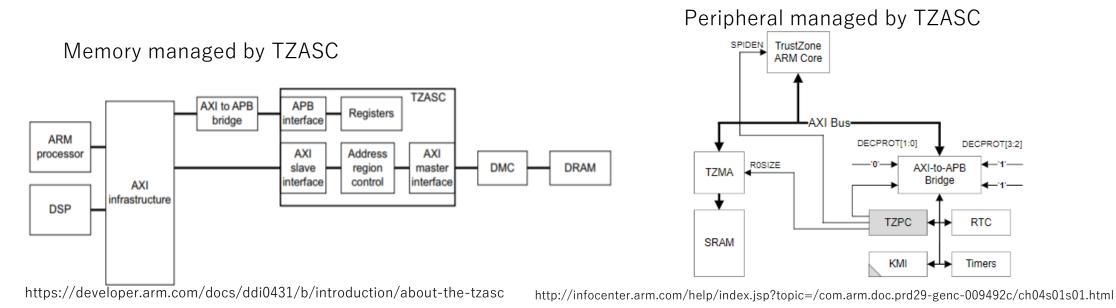
Difference of Implementation of Trusted OS


• Cortex-A 32bit (ARMv7) and 64bit (ARMv8)

https://www.slideshare.net/linaroorg/arm-trusted-firmareforarmv8alcu13

Comparing Cortex-A and Cortex-M

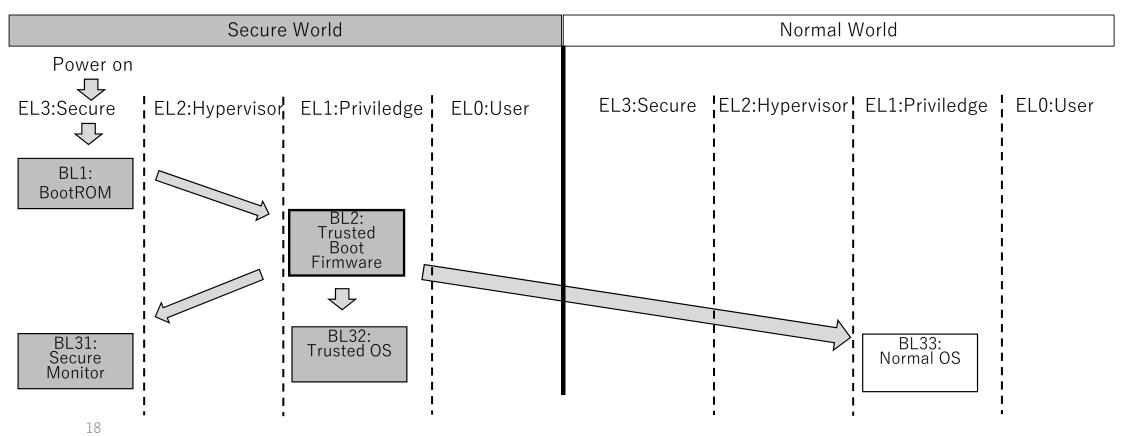
Cortex-M


- Cortex-A follows the layer architecture of GlobalPlatform TEE.
- Cortex-M's mode (thread or handler) can be privilege or unprivileged.
- Cortex-M TrustZone doesn't provide monitor mode, because latency is important for safety.

Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho and Sarah Martin, "TrustZone Explained: Architectural Features and Use Cases", IEEE International Conference on Collaboration and Internet Computing (2016)

Hardware components to build TrustZone

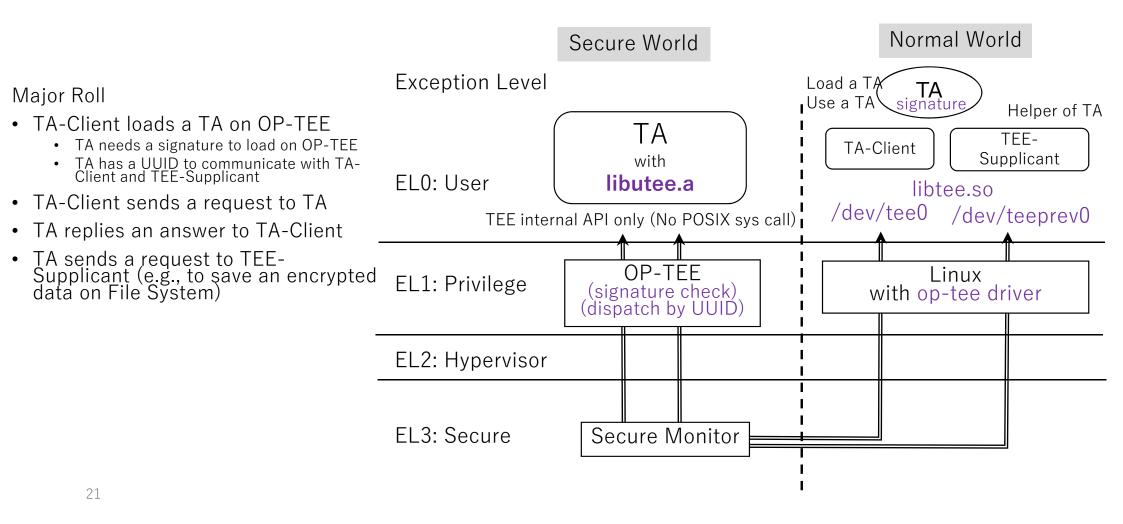
- TZASC: TrustZone Address Space Controller
- TZPC: TrustZone Protection Controller
- TZMA: TrustZone Memory Adapter


- Each Peripheral has **Non-Secure bit**
 - IRQ for Normal World
 - FIQ for Secure World

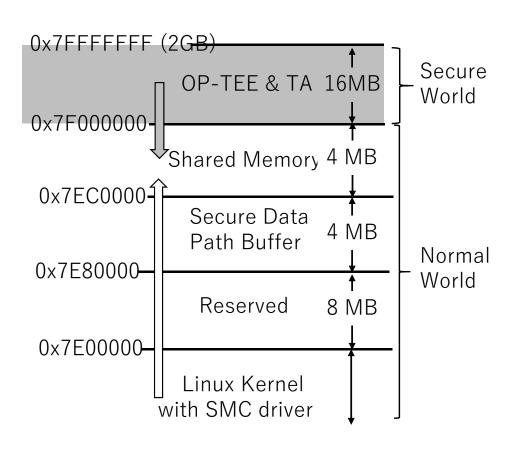
OP-TEEのソースでは Address Space ControllerにTZC-380とTZC-400の記述がありました。 ARM Trusted FirmwareではTZC-400はありますが、TZC-380が見つからない。

Boot Sequence on ARM Trust Zone

- BL: Boot Loader
- EL: Exception Level


Trusted OS

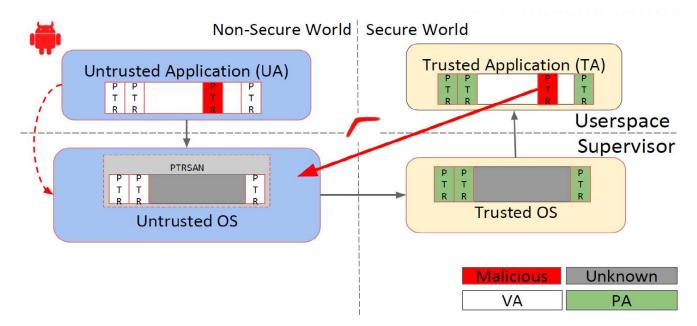
- Trusted OS is not a normal OS
 - Trusted OS is TCB (Trusted Computing Base). It must be secure (small).
 - No POSIX API, No dynamic link library
 - TA becomes a static linked binary.
- Trusted OS needs the help of normal OS
 - Because Trusted OS has no File System, no device driver (except some special devices, e.g., UART)
 - When a TA want to save a data, the data is encrypted and saved on FS of normal OS.


Implementation of Trusted OS

- Open Source Trusted OS
 - OP-TEE (Linaro) <u>https://github.com/OP-TEE</u>
 - Open-TEE (Aalto University[TrustCom15]) https://open-tee.github.io/
 - Trusty (Google) https://source.android.com/security/trusty/index.html
 - SierraTEE (Sierra) <u>https://www.sierraware.com/open-source-ARM-TrustZone.html</u>
 - SafeG (Nagoya University) <u>https://www.toppers.jp/en/safeg.html</u>
- Enterprise Trusted OS
 - Apple's Secure Enclave
 - Qualcomm's QTEE, ex. QSEE <u>https://www.qualcomm.com/solutions/mobile-computing/features/security</u>
 - Samsung's Knox https://www.samsungknox.com/en
 - Samsung's Teegris <u>http://developer.samsung.com/teegris</u>
 - Trustonic's Kinibi OS, ex. Mobicore/t-base/G&D
 - Huawei's TrustedCore

How to run a TA on OP-TEE

Memory Map of OP-TEE


- ARM 96Board Hikey 2GB
 - SoC: Kirin 620
 - Cortex-A53 Octa-core 64-bit 1.2GHz (ARM v8 instruction set)
- Software size: Our experience
 - Secure world
 - Secure Monitor 33KB
 - OP-TEE 281KB
 - TA 1,200KB
 - Normal World (on Linux)
 - TA-Client 17KB
 - TEE-Supplicant 197KB

TEE Vulnerabilities

- Many attacks exist on software and hardware.
 - Software
 - Boomerang [NDSS'17]
 - Pointer exploit. TA can access any memory region. Attacker exploits TA to get sensitive data on normal world.
 - QSEE TrustZone Kernel Integer Overflow [BlackHat14]
 - Exploiting Trustzone on Android [BlackHat15]
 - Hardware
 - Foreshadow [USENIX Sec'18] (aka L1TF: L1 Terminal Fault)
 - Intel SGX Vulnerability of out-of-order execution
 - Microcode update mitigate this vulnerability
 - Prime+Count [ACSAC'18] by Samsung
 - ARM Trust Zone Cross-world Covert Channels on using cache.
 - Cache Attack [EuroSec'17] <u>https://www1.cs.fau.de/sgx-timing</u>
 - Intel SGX Cache Timing Attack

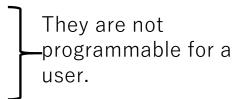
23

Boomerang Flaw[NDSS18]

TEE name	Vendor	Impact	Bug Detail
TrustedCore	Huawei	Arbitrary write	CVE-2016-8762
QSEE	Qualcomm	Arbitrary write	CVE-2016-5349
Trustonic	As used by Samsung	Arbitrary write	
SierraTEE	Sierraware	Arbitrary write	
OP-TEE	Linaro	Write to other application's memory	

*Security issues with ARM TrustZone [TestingStage18]

HIEE on RISC-V


On RISC-V

- SMM: System Management Mode
 - Used by BIOS/UEFI for ACPI, etc.
- Intel's ME: Management Engine.
 - Run MINIX. Used for remote wakeup.
- Intel SGX
- ARM TrustZone

⇒ Machine Mode

 \Rightarrow ???

- $\Rightarrow \cdot$ Sanctum of MIT
 - Keystone of UCB
- ⇒ MultiZone of Hex-Fife
 - TEE WG of RISC-V Foundation

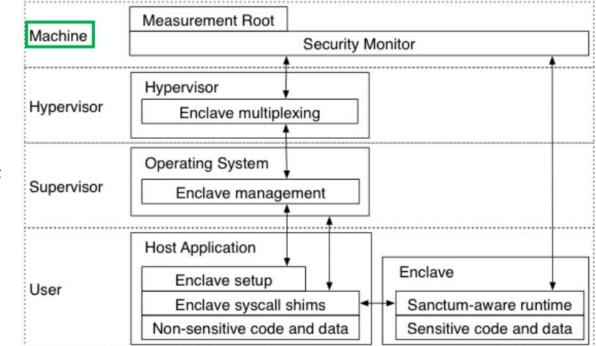
They are programmable for a user. —They are used for TEE.

RISC-V TEE project

- Rahul Mahadev's OP-TEE on seL4 [Google Summer of Code 2016]
- Sanctum [USENIX Sec'16]
 - KeyStone [2018]
- MultiZone of Hex-Five[Sep/2018]
- TERP of SiFive[RISC-V Summit Dec/2018]
- TEE Working Group of RISC-V foundation

OP-TEE on RISC-V using seL4

- Rahul Mahadev's Google Summer of Code 16
- <u>http://mahadevrahul.blogspot.com/</u>
 - The TrustZone features and secure monitor must be implemented as a seL4 library.
 - OPTEE is paravirtualized, all calls referencing ARM Trusted Firmware and secure monitor are replaced with new calls.


Арр	ТА		
Rich OS	Paravirtualized OPTEE		
(Linux)	Library to emulate TrustZone	VMM	
	seL4		

Sanctum [USENIX Sec'16]

• Figure of software stack

https://www.usenix.org/sites/default/files/conference/protected-files/security16_slides_costan.pdf

- Enclave is created o User Mode.
- Secure Monitor on Machine mode helps the secure creation of enclave.
- Successor project "KeyStone" of UCB and MIT.
- <u>https://keystone-enclave.org/</u>

MultiZone of Hex-Five

• MultiZone is announced

ITRE SOFTWARE SECURITY DEVOPS BUSINESS PERSONAL TECH SCIENCE

Security

Arms race: SiFive, Hex Five build code safe houses for RISC-V chips

Those developing custom CPUs can now tap a TrustZone-ish trusted execution environment By Thomas Claburn in San Francisco 10 Sep 2018 at 20108 2

Hex Five Security Adds MultiZone Trusted Execution Environment to the SiFive Software Ecosystem

Enabling RISC-V Developers to a Robust Trusted Execution Environment without any changes to hardware or software.

SAN MATEO, Calif. -- **Sept. 10, 2018** -- **<u>SiFive</u>, the leading provider of commercial RISC-V processor IP, today welcomed <u>Hex Five Security</u>, m of MultiZone[™] Security - the first Trusted Execution Environment (TEE) f RISC-V, to the growing SiFive Software Ecosystem. Through the partners' SiFive will incorporate MultiZone[™] Security into its Freedom SDK for easy adoption by SiFive customers seeking a Trusted Execution Environment.**

• MultiZone is based on nanokernel.

- <u>https://hex-five.com/wp-content/uploads/2018/09/hex_five_multizone_datasheet.20180920.pdf</u>
- System Requirements
 - 32 bit or 64 bit RISC-V ISA with 'S' or 'U' extensions
 - Physical Memory Protection compliant with Ver. 1.10
 - 4KB FLASH and 1KB RAM

Network Stack	Root of Trust	Crypto Libraries	User App / RTOS / Linux	User App n
Ļ	Ļ	Ļ	Ļ	
stack	stack	stack	stack	
heap	heap	heap	heap	
Uninit data	Uninit data	Uninit data	Uninit data	
Init. data	Init. data	Init. data	Init. data	
text	text	text	text	

InterZone[™] Secure Communications

MultiZone™ nanoKernel

SiFive TERP: A Trusted Execution Reference Platform for Embedded Secure Applications

- The goal of TERP is to describe all the components necessary to build an embedded RISC-V processor which provides isolated multi-tenancy.
- It will be open at **RISC-V Summit 5/Dec/2018**.

TEE Working Group of RISC-V foundation

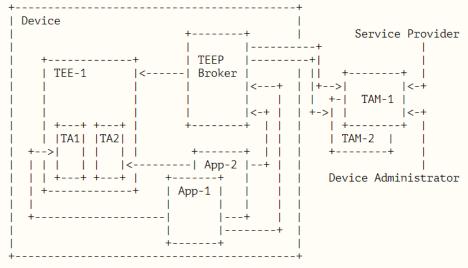
- Remote conference every week
 - Discuss memory protection, privilege mode, etc.
- When we implement OP-TEE on RISC-V, we must develop
 - Boot sequence: Trusted Boot Firmware, Secure Monitor
 - Linux kernel driver
 - Libraries (libutee.a for TA and libtee.so for Linux Apps)
 - Linux application to assist TA (TEE-supplicant)

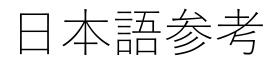
Other Implementation of TEE

- Hardware
 - FPGA TEE "Iso-X" (SUNY at Binghamton) [Micro47 2014]
 - GPU TEE "Graviton" (Microsoft Research) [OSDI'18]
 - Requires NVIDIA GPU extension
- Software
 - TrustZone virtualization "vTZ" (Shanghai Jiao Tong University) [USENIX Sec'17]
 - Virtualize TrustZone for VMs
 - TEE delegation "DelegaTEE" (ETH Zurich) [USENIX Sec'18]
 - DelegaTEE is implemented by Intel SGX
 - TEE Migration (INRIA) [IFIP WISTP'15]
 - privacy-preserving TEE profile migration protocol

IETF's TEEP

- Trusted Execution Environment Provisioning
 - <u>https://datatracker.ietf.org/wg/teep/about/</u>
 - Protocol to manage TA: Trusted Application.
 - TAM(Trusted Application Manager) controls life cycle of TA (create, update, and delete).



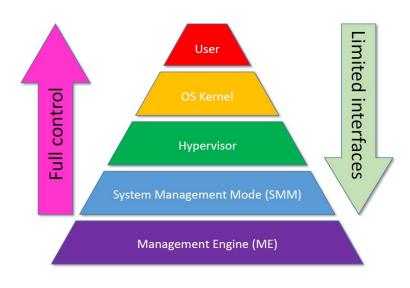

Figure 1: Notional Architecture of TEEP

• TEE's API (Trusted OS) is important.

33

Survey papers

- Secure Processors Part I: Background, Taxonomy for Secure Enclaves and Intel SGX Architecture [2017, Srinivas Devadas]
- SoK: A Study of Using Hardware-assisted Isolated Execution Environments for Security[HASP16]
- Security issues with ARM TrustZone [TestingStage18]
- Trusted Execution Environment: What It is, and What it is Not [TrustCom15]
- TrustZone Explained: Architectural Features and Use Cases [CIC16]

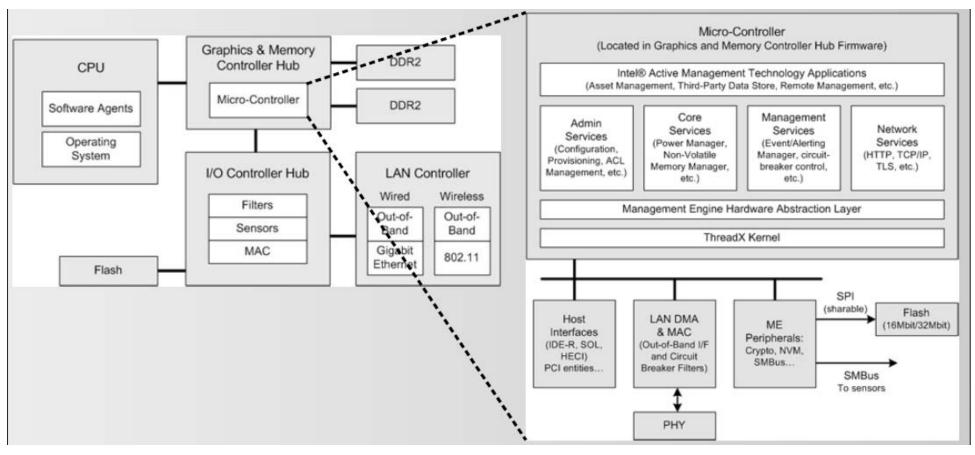


- FFRI Monthly Research 「ARMv8-M TrustZone:組み込みデ バイス向けアーキテクチャとセキュリティ機能」
 - <u>https://www.ffri.jp/blog/2016/03/2016-03-18.htm</u>
- セキュアハードウェアの登場とその分析
 - <u>https://www.ffri.jp/assets/files/monthly_research/MR201303_Trust</u> <u>Zone.pdf</u>
- TrustZone のユースケースと動向
 - <u>https://www.ffri.jp/assets/files/monthly_research/MR201703_Trust</u>
 <u>Zone_use_case_and_trend_JPN.pdf</u>

Intel ME (Management Engine)

- Micro controller on chipset
- MINIX runs
 - HTTPS server runs
- Intel AMT (Active Management Technology)
 - Remote boot which works as IPMI
- Update with BIOS (Size info https://github.com/corna/me_cleaner)
 - Generation 2 (Nehalem-Broadwell, ME version 6 -10)
 - 1.5 MB (non-AMT firmware) 5 MB (AMT firmware)
 - Generation 3 (from Skylake onwards, ME version >= 11)
 - 2 MB (non-AMT firmware) 7 MB (AMT firmware)

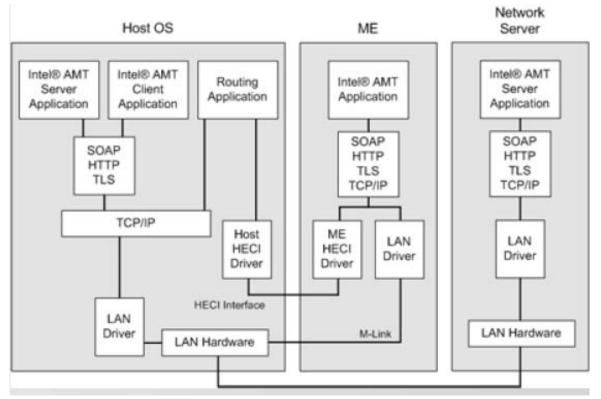
Position of Intel ME



Cadayay			
Code you know about	Ring 3 (User)		
	Ring 0 (Linux)		
	Ring -1 (Xen etc.)		
Ring -2 kernel and ½ kernelControl all CPU resources.Invisible to Ring -1, 0, 3		Ring -3 kernels	
you don't know	SMM ½ kernel. Traps to 8086 16-bit mode.	Management Engine, ISH, IE. Higher privilege than Ring -2. Can turn on node and reimage	
about	UEFI kernel running in 64-bit paged mode.	disks invisibly. Minix 3.	
X86	CPU you know about	X86 CPU(s) you don't know about	

Intel ME: The Way of the Static Analysis [TROOPERS17]

Replace your exploit-ridden firmware with a Linux kernel [LinuxCon17]


Overview of Intel ME

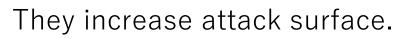
https://itsfoss.com/fact-intel-minix-case/

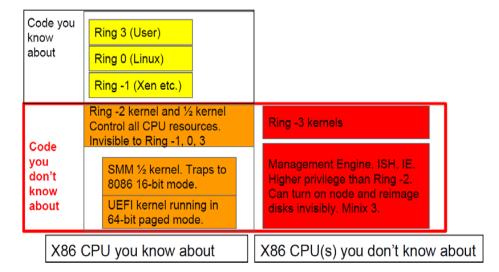
Igor Skochinsky, Intel ME Secrets, CODE BLUE 2014

Network of Intel ME

- HECI: Host Embedded Controller Interface
 - communication using a PCI memory-mapped area
- Network protocol is SOAP(HTTP or HTTPS)

Igor Skochinsky, Intel ME Secrets, CODE BLUE 2014


Vulnerability of Intel ME


- Intel ME Manufacturing Mode: obscured dangers and their relationship to Apple MacBook vulnerability, CVE-2018-4251
 - <u>http://blog.ptsecurity.com/2018/10/intel-me-manufacturing-mode-macbook.html</u>
- Intel ME 11.x Firmware Images Unpacker
 - <u>https://github.com/ptresearch/unME11</u>
- Vulnerability INTEL-SA-00086 allows to activate JTAG for Intel Management Engine core.
 - <u>https://github.com/ptresearch/IntelTXE-PoC</u>
- "Silent Bob is Silent", Escalation of privilege vulnerability on Intel AMT, CVE-2017-5689

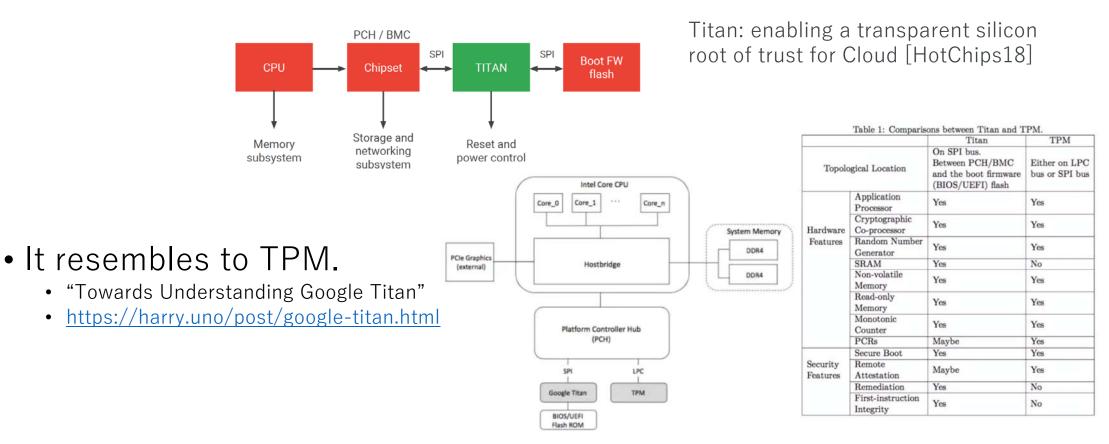
Google's stance

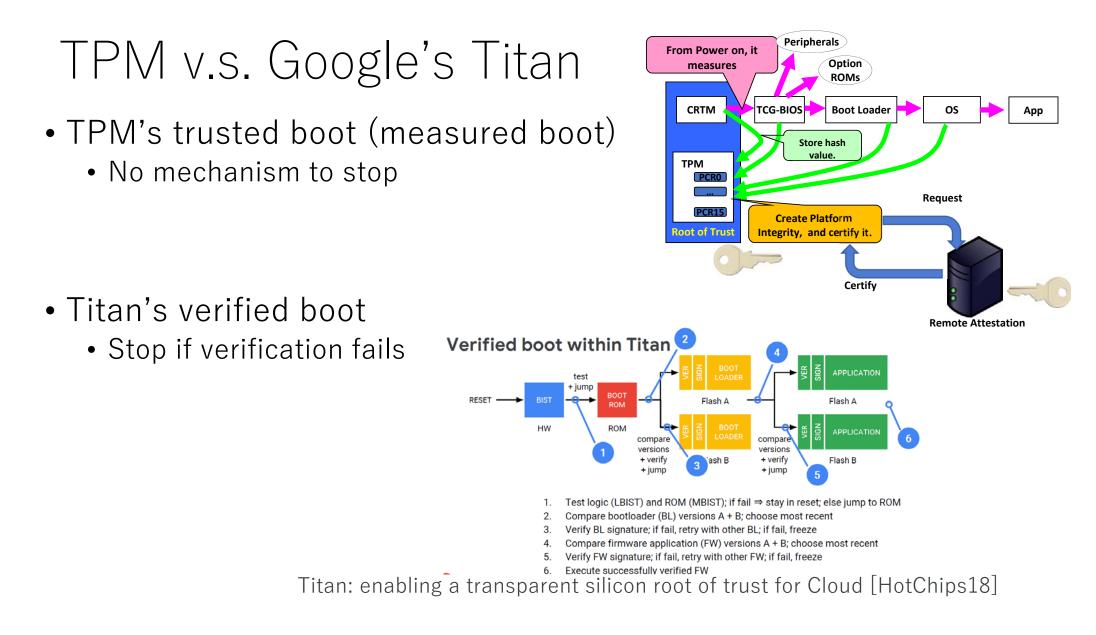
- Ring2-3 has many functions (in MINIX)
 - IP stacks (4 and 6)
 - File systems
 - Drivers (disk, net, USB, mouse)
 - Web servers

They work even if the main OS is terminated.

Replace your exploit-ridden firmware with a Linux kernel [LinuxCon17]

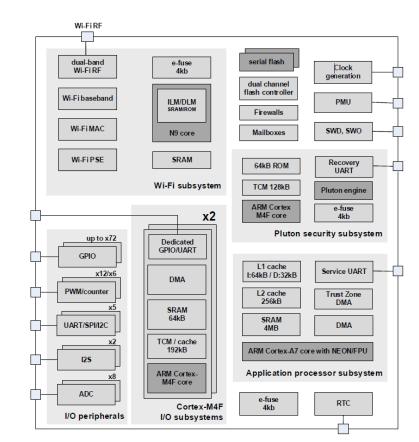
Googles Answer NERF: Non-Extensible Reduce Firmware


- De-blobbed ME
- UEFI reduced to its most basic parts
- SMM disabled or vectored to Linux
- Userland written in Go (<u>http://u-root.tk</u>)
 - u-root [USENIX'15]


Replace your exploit-ridden firmware with a Linux kernel [LinuxCon17]

Google's Titan

• Google proposes "secure chip" which integrated between chipset and boot flash.


Titan system integration

MS Azure Pluton

- MediaTek MT3620The first Azure Sphere class Microcontroller
 - Securely isolated subsystems.
 - Units has HW firewalls.
 - HW based attestation
 - Security processor is first to boot
 - Initial code is in ROM.
 - Software is signed.
 - SW rollback protection.

The Hardware Security Platform Behind Azure Sphere [HotChips 18]

Conclusions

- Many CPU security faculties.
 - The common feature is "HIEE: Hardware-assisted Isolated Execution Environments".
- Related Talks
 - 29/Nov 第7回サイバーセキュリティ国際シンポジウム@慶応大学
 - RISC-V Panel
 - <u>https://cysec-lab.keio.ac.jp/sympo1811/index-j.html</u>
 - 13/Dec ハードウェアセキュリティフォーラム2018 @東大
 - <u>http://www.ieice.org/~hws/</u>