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QUIC

● Currently under standardization at IETF
● Providing TCP/TLS1.3 service atop UDP

○ (Nearly) everything is encrypted
○ Reliable, in-order, multistream data transfer

● Frame-based protocol
● Large companies are deploying both client and server sides

○ Limited interoperability today
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Application Requirements Evolve

Simple reliable file transfer

Mobility, (live) video streaming

Latency critical, partially unreliable

Transport protocols need to adapt! 3



Negotiating Extensions: The Human Protocol
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Hello, I speak [French, English, Dutch]

Hi, I understand [Japanese, English]

Ok, let’s speak English!

Require support from both sides: delayed deployment

How could I 
learn Japanese?



Adding Monitoring to an Implementation

● High-performance, native server implementation
● Client side based on open-source 3rd-party library
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QUIC lib AB

B

No, thanks.

○ A opens Pull Request to extend the library
■ Get monitoring information for some connections

○ But not merged by B

Client AppA

Clients seem
to have poor
performance

A

Activate 
monitoring with 
specific filters



What If We Could Have...
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Personalized Transport Functionalities
Per-Connection Deployment

A base, simple implementation enabling



Agenda

● Motivations
● Pluginized QUIC Design
● Evaluating PQUIC with Use Cases
● Conclusion and Future Works
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Pluginized QUIC

● Revisit the structure of protocol implementations
● Transport protocol = set of basic functions (protocol operations)

○ Plugin: new set of protocol functions (modified or added)
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Transport

● Dynamic per-connection customization
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Exchanging Plugins: 1st Connection
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Initial: Client Hello - “Hey, I support multipath”

Initial: Server Hello - “I want to inject monitoring”

Encrypted - PLUGIN_REQUEST(monitoring)

Encrypted - PLUGIN(monitoring)

...

Let’s monitor 
the client state.

Let’s request 
monitoring

Bytecode



Exchanging Plugins: Next Connections
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Initial: Client Hello - “Hey, I support multipath and monitoring”

Initial: Server Hello - “Let’s use monitoring”

Encrypted - STREAM, STAT(info about RTT, reordering,...)

Encrypted - STREAM

...

Let’s use 
monitoring

Added by the 
monitoring

plugin



Revisiting Protocol Implementation Design

What do we need?

● Running plugins in a safe environment
● Identifying protocol operations
● Providing an API to the protocol plugins
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Running Plugins

● Plugin = set of bytecodes
○ 1 bytecode → 1 function
○ Hardware/OS independent
○ Kept under control
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Virtual
Machine

● Rely on a virtual machine
○ Isolate bytecode from host implementation



eBPF Virtual Machine

● Lightweight, integrated in Linux kernel since 2014
○ RISC instruction set (~100)

■ ALU, memory and branch purposes

● Bytecode recompiled to native architecture
● Verifier to ensure programs safety
● Dedicated, isolated stack memory

○ But no persistence

● Rely on a user-space implementation
○ With relaxed verifier
○ With persistent heap memory
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Identifying Protocol Operations
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built-in implementation

Cleartext Encrypted

Flags Connection ID STREAM 4 “Some text”Packet 
Number ACK 4

Parse 
packet 
header

Process 
ACK
frame

Process 
STREAM 

frame

Compute 
Retransmit 

Timer



Modifying/Adding Protocol Operations

15

Process 

incoming 

packet

Each operation has its own
built-in implementation

Cleartext Encrypted

Flags Connection ID STREAM 4 “Some text”
Packet 

Number
ACK 4

Parse 

packet 

header

Process 

ACK

frame

Process 

STREAM 

frame

Compute 

Retransmit 

Timer

Compute 

Retransmit 

Timer

01011
10010

VM

Cleartext Encrypted

Flags Connection ID STREAM 4 “Some text”
Packet 

Number
ACK 4 STAT (RTT info,...)

Process 

STAT

frame

01100
10101

VM



REPLACE

Changing the Retransmission Timer

int process_ack_frame(args) {

// Some processing

ret = compute_retransmission_timer(args);

// Some processing

return val;

}
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int compute_retransmission_timer(args) {

rto = srtt + 4 * rttvar;

return rto;

}

VM
rto = srtt + 3 * min_rtt;

return rto;

Exclusive full-access to 
connection state



Inserting Monitoring Plugin

int process_ack_frame(args) {

// Some processing

ret = compute_retransmission_timer(args);

// Some processing

return val;

}
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int compute_retransmission_timer(args) {

rto = srtt + 4 * rttvar;

return rto;

}

PRE

POST

VM 01100
10101

VM 11100
10000

Read-only 
access to 

connection 
state

VM 11111
00000



Linking Plugins to the Core Implementation
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● Exposing connection fields
● Offering persistent heap memory
● Retrieving data in plugin memory
● Calling other protocol operations VM
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stack Plugin
Memory

heap

Get specific plugin data

VM’
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stack heap
Call

PQUIC core

Connection
State

get() / set()

built_in()

Call



Communication between Plugin Bytecodes
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parse_frame[ACK]

built_in()

bbr_congestion_control replace
10110
00101

VM”

stack heap Plugin B
Memory

write_frame[STAT] replace

postcompute_retransmission_timer

heap
VM
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Agenda

● Motivations
● Pluginized QUIC Design
● Evaluating PQUIC with Use Cases
● Conclusion and Future Works
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Evaluation Overview

● Implementation based on picoquic
○ IETF QUIC in C language

● Evaluation in our lab
○ Use NetEm and HTB to configure links

● Experimental design
○ 139 points
○ Consider median over 9 runs
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{d, bw}

{d, bw}

Metric Minimum Maximum
One-way delay (ms) 2.5 25

Bandwidth (Mbps) 5 50

https://github.com/private-octopus/picoquic



Exploring Use Cases

● Monitoring
● A QUIC VPN
● Multipath
● Forward Erasure Correction
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Plugin Lines of C Code Number of bytecodes

Monitoring 500 14

QUIC VPN 500 11

Multipath 2600 32

Forward Erasure Correction 2500 51



Exploring Use Cases

● Monitoring
● A QUIC VPN
● Multipath
● Forward Erasure Correction
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Read paper for other 
use cases

Plugin Lines of C Code Number of bytecodes

Monitoring 500 14

QUIC VPN 500 11

Multipath 2600 32

Forward Erasure Correction 2500 51



1st Plugin: QUIC VPN
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→ But QUIC provides reliable, in-order data delivery

QUIC

VPN Application
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send_datagram()
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● Datagram plugin
○ Unreliable data delivery
○ Application API

■ Protocol operation

Alternative to DTLS, IPsec



QUIC VPN in Action
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Compare download time for a single file transfer using TCPCubic over 1 path

Faster 
in VPN

Plain 
TCP 

Faster

Overhead of 
≊7%

Processing 
time + MTU 
difference



2nd Plugin: Multipath QUIC

Implement the IETF Multipath draft

● Link paths to specific networks
○ Connection not bound to 4-tuple

● Exchange IP addresses
● Create paths over pair of IP addresses

○ Full-mesh

● Schedule packets over paths
○ Round-robin fashion
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Multipath
Plugin

Core 
functionalities

Modular
Algorithms

https://datatracker.ietf.org/doc/draft-deconinck-quic-multipath/



Multipath QUIC in Action

GET request over a dedicated stream

● Consider 2-path network with symmetric characteristics
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Aggregate both paths!
Equivalent to MPTCP!



Combining Plugins into a Multipath QUIC VPN
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Combining Plugins into a Multipath QUIC VPN
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Combining Plugins into a Multipath QUIC VPN
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Multipath QUIC VPN in Action
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Compare download time for a single file transfer using TCPCubic

● 2 symmetric network paths

VPN enables TCP 
to use both paths!



Agenda

● Motivations
● Pluginized QUIC Design
● Evaluating PQUIC with Use Cases
● Conclusion and Future Works
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Conclusion and Future Works

● PQUIC: Dynamically extends protocol implementations
● Common pluginizable client, specialized server implementation

○ Possible through secure plugin exchange

● Four different use-cases fully implemented with plugins
○ Monitoring, VPN, Multipath, Forward Erasure Correction

● Future works
○ Approach applicable to many other protocols
○ How can we have independent, interoperable PQUIC implementations?

■ Specification of the VM, protocol operations, API,...
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Thanks for your attention!
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https://pquic.org



● Coarse protocol tuning
○ Global parameters (sysctl,...)
○ Very specific socket options

● Extension deployment challenges
○ Specification process (IETF)
○ Implementation puzzle

■ Client waits for server support
■ Server waits for client support

○ Middlebox interferences

Extending/Customizing TCP Is Hard

● TCP Option Negotiation
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SYN [SACK, WSCALE, TSTAMP]

SYN/ACK [SACK, WSCALE]



Processing New STAT frames
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Frame Fields (ex. used for RTT estimation)STAT
Type of the frame

=
Parameter to a generic protocol operation

int process_frame(args) {

for each frame {

ret = process_frame_param(frame.type, args);

// Some processing

}

return val;

}

int process_stat_frame(args) {

}

PRE

POST

REPLACE

VM
// Code processing STAT

return ret;



Trusting Plugins
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Client Server

Verifier A Verifier B Verifier 
C

...
Plugin

Repository

Developer

Publish Check own bindings

Lookup for proofPull and build Merkel Tree

Ask plugin and proof from B

Give plugin and B authentication path



Proof of Consistency
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H(‘multipath’) = ‘010’011010...

h010 = H(‘multipath’||multipath bytecode)

h01 = H(h010 || 
h011)

01011
10010

0 1

...
h011

h0 = H(h00 || h01)

Root = H(h0 || h1)

...
h00

0 1

0 1

...
h1

Provided 
Authentication 

PathRecomputed

Compare with stored 
verifier Root



Plugin Overhead
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10 Gbps

Plugin Mean Goodput
PQUIC, no plugin 1104 Mbps

Monitoring 1037 Mbps

Multipath 1 path 757 Mbps

Monitoring + Multipath 1 path 714 Mbps

Intel Xeon E5-2640 v3

JITed eBPF ~2x slower than native code
Get/set interface ~5x slower than direct access

-7% goodput
+8% CPU instructions



Verifying the Termination of Plugins with T2
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Plugin Lines of C Code # Bytecodes Proven terminating

Monitoring 500 14 13

VPN 500 11 8

Multipath 2600 32 29

FEC 2500 51 37


