
Pluginizing QUIC

Quentin De Coninck, François Michel, Maxime Piraux, Florentin Rochet,
Thomas Given-Wilson, Axel Legay, Olivier Pereira, Olivier Bonaventure

SIGCOMM 2019
UCLouvain, Belgium

1

QUIC

● Currently under standardization at IETF
● Providing TCP/TLS1.3 service atop UDP

○ (Nearly) everything is encrypted
○ Reliable, in-order, multistream data transfer

● Frame-based protocol
● Large companies are deploying both client and server sides

○ Limited interoperability today

IP
TCP
TLS

HTTP/2

IP
UDP
QUIC

HTTP/3

TLS

2

H F F F

Application Requirements Evolve

Simple reliable file transfer

Mobility, (live) video streaming

Latency critical, partially unreliable

Transport protocols need to adapt! 3

Negotiating Extensions: The Human Protocol

4

Hello, I speak [French, English, Dutch]

Hi, I understand [Japanese, English]

Ok, let’s speak English!

Require support from both sides: delayed deployment

How could I
learn Japanese?

Adding Monitoring to an Implementation

● High-performance, native server implementation
● Client side based on open-source 3rd-party library

5

QUIC lib AB

B

No, thanks.

○ A opens Pull Request to extend the library
■ Get monitoring information for some connections

○ But not merged by B

Client AppA

Clients seem
to have poor
performance

A

Activate
monitoring with
specific filters

What If We Could Have...

6

Personalized Transport Functionalities
Per-Connection Deployment

A base, simple implementation enabling

Agenda

● Motivations
● Pluginized QUIC Design
● Evaluating PQUIC with Use Cases
● Conclusion and Future Works

7

Pluginized QUIC

● Revisit the structure of protocol implementations
● Transport protocol = set of basic functions (protocol operations)

○ Plugin: new set of protocol functions (modified or added)

8

Transport

● Dynamic per-connection customization

RTO
Computation

Header
Preparation

Add to send
buffer

Unreliable
Message

Add new
functions

Different
algorithms

Isolation
between

connections

C1

C2

RTO
Computation

Header
Preparation

Add to send
buffer

Unreliable
Message

RTO
Computation

Header
Preparation

Add to send
buffer

RTO
Computation

Change
algorithms

RTO
Computation

...

...

...

Exchanging Plugins: 1st Connection

9

Initial: Client Hello - “Hey, I support multipath”

Initial: Server Hello - “I want to inject monitoring”

Encrypted - PLUGIN_REQUEST(monitoring)

Encrypted - PLUGIN(monitoring)

...

Let’s monitor
the client state.

Let’s request
monitoring

Bytecode

Exchanging Plugins: Next Connections

10

Initial: Client Hello - “Hey, I support multipath and monitoring”

Initial: Server Hello - “Let’s use monitoring”

Encrypted - STREAM, STAT(info about RTT, reordering,...)

Encrypted - STREAM

...

Let’s use
monitoring

Added by the
monitoring

plugin

Revisiting Protocol Implementation Design

What do we need?

● Running plugins in a safe environment
● Identifying protocol operations
● Providing an API to the protocol plugins

11

Running Plugins

● Plugin = set of bytecodes
○ 1 bytecode → 1 function
○ Hardware/OS independent
○ Kept under control

12

01011
10010

Virtual
Machine

● Rely on a virtual machine
○ Isolate bytecode from host implementation

eBPF Virtual Machine

● Lightweight, integrated in Linux kernel since 2014
○ RISC instruction set (~100)

■ ALU, memory and branch purposes

● Bytecode recompiled to native architecture
● Verifier to ensure programs safety
● Dedicated, isolated stack memory

○ But no persistence

● Rely on a user-space implementation
○ With relaxed verifier
○ With persistent heap memory

13

01011
10010

x86_64

Identifying Protocol Operations

14

Process
incoming
packet

Each operation has its own
built-in implementation

Cleartext Encrypted

Flags Connection ID STREAM 4 “Some text”Packet
Number ACK 4

Parse
packet
header

Process
ACK
frame

Process
STREAM

frame

Compute
Retransmit

Timer

Modifying/Adding Protocol Operations

15

Process

incoming

packet

Each operation has its own
built-in implementation

Cleartext Encrypted

Flags Connection ID STREAM 4 “Some text”
Packet

Number
ACK 4

Parse

packet

header

Process

ACK

frame

Process

STREAM

frame

Compute

Retransmit

Timer

Compute

Retransmit

Timer

01011
10010

VM

Cleartext Encrypted

Flags Connection ID STREAM 4 “Some text”
Packet

Number
ACK 4 STAT (RTT info,...)

Process

STAT

frame

01100
10101

VM

REPLACE

Changing the Retransmission Timer

int process_ack_frame(args) {

// Some processing

ret = compute_retransmission_timer(args);

// Some processing

return val;

}

16

int compute_retransmission_timer(args) {

rto = srtt + 4 * rttvar;

return rto;

}

VM
rto = srtt + 3 * min_rtt;

return rto;

Exclusive full-access to
connection state

Inserting Monitoring Plugin

int process_ack_frame(args) {

// Some processing

ret = compute_retransmission_timer(args);

// Some processing

return val;

}

17

int compute_retransmission_timer(args) {

rto = srtt + 4 * rttvar;

return rto;

}

PRE

POST

VM 01100
10101

VM 11100
10000

Read-only
access to

connection
state

VM 11111
00000

Linking Plugins to the Core Implementation

18

● Exposing connection fields
● Offering persistent heap memory
● Retrieving data in plugin memory
● Calling other protocol operations VM

11110
00001

stack Plugin
Memory

heap

Get specific plugin data

VM’

10110
00101

stack heap
Call

PQUIC core

Connection
State

get() / set()

built_in()

Call

Communication between Plugin Bytecodes

19

parse_frame[ACK]

built_in()

bbr_congestion_control replace
10110
00101

VM”

stack heap Plugin B
Memory

write_frame[STAT] replace

postcompute_retransmission_timer

heap
VM

11110
00001

stack

heap
VM’

01011
10010

stack

Plugin A
Memory

Agenda

● Motivations
● Pluginized QUIC Design
● Evaluating PQUIC with Use Cases
● Conclusion and Future Works

20

Evaluation Overview

● Implementation based on picoquic
○ IETF QUIC in C language

● Evaluation in our lab
○ Use NetEm and HTB to configure links

● Experimental design
○ 139 points
○ Consider median over 9 runs

21

{d, bw}

{d, bw}

Metric Minimum Maximum
One-way delay (ms) 2.5 25

Bandwidth (Mbps) 5 50

https://github.com/private-octopus/picoquic

Exploring Use Cases

● Monitoring
● A QUIC VPN
● Multipath
● Forward Erasure Correction

22

Plugin Lines of C Code Number of bytecodes

Monitoring 500 14

QUIC VPN 500 11

Multipath 2600 32

Forward Erasure Correction 2500 51

Exploring Use Cases

● Monitoring
● A QUIC VPN
● Multipath
● Forward Erasure Correction

23

Read paper for other
use cases

Plugin Lines of C Code Number of bytecodes

Monitoring 500 14

QUIC VPN 500 11

Multipath 2600 32

Forward Erasure Correction 2500 51

1st Plugin: QUIC VPN

24

V VQUIC
Connection

IP

TCP

DATA

QUIC

IP

IP

TCP

DATA

IP

TCP

DATA

→ But QUIC provides reliable, in-order data delivery

QUIC

VPN Application

Datagram
Plugin

send_datagram()

QUIC

IP

IP

TCP

DATA

● Datagram plugin
○ Unreliable data delivery
○ Application API

■ Protocol operation

Alternative to DTLS, IPsec

QUIC VPN in Action

25

Compare download time for a single file transfer using TCPCubic over 1 path

Faster
in VPN

Plain
TCP

Faster

Overhead of
≊7%

Processing
time + MTU
difference

2nd Plugin: Multipath QUIC

Implement the IETF Multipath draft

● Link paths to specific networks
○ Connection not bound to 4-tuple

● Exchange IP addresses
● Create paths over pair of IP addresses

○ Full-mesh

● Schedule packets over paths
○ Round-robin fashion

26

Multipath
Plugin

Core
functionalities

Modular
Algorithms

https://datatracker.ietf.org/doc/draft-deconinck-quic-multipath/

Multipath QUIC in Action

GET request over a dedicated stream

● Consider 2-path network with symmetric characteristics

27

Aggregate both paths!
Equivalent to MPTCP!

Combining Plugins into a Multipath QUIC VPN

28

QUIC
Connection

Multipath
Plugin

Datagram
Plugin

Combining Plugins into a Multipath QUIC VPN

29

V VQUIC
Connection

Multipath
Plugin

Datagram
Plugin

Combining Plugins into a Multipath QUIC VPN

30

V VQUIC
Connection

Multipath
Plugin

Datagram
Plugin

+

Multipath QUIC VPN in Action

32

Compare download time for a single file transfer using TCPCubic

● 2 symmetric network paths

VPN enables TCP
to use both paths!

Agenda

● Motivations
● Pluginized QUIC Design
● Evaluating PQUIC with Use Cases
● Conclusion and Future Works

33

Conclusion and Future Works

● PQUIC: Dynamically extends protocol implementations
● Common pluginizable client, specialized server implementation

○ Possible through secure plugin exchange

● Four different use-cases fully implemented with plugins
○ Monitoring, VPN, Multipath, Forward Erasure Correction

● Future works
○ Approach applicable to many other protocols
○ How can we have independent, interoperable PQUIC implementations?

■ Specification of the VM, protocol operations, API,...

34

01011
10010

https://pquic.org

Thanks for your attention!

35

https://pquic.org

● Coarse protocol tuning
○ Global parameters (sysctl,...)
○ Very specific socket options

● Extension deployment challenges
○ Specification process (IETF)
○ Implementation puzzle

■ Client waits for server support
■ Server waits for client support

○ Middlebox interferences

Extending/Customizing TCP Is Hard

● TCP Option Negotiation

36

SYN [SACK, WSCALE, TSTAMP]

SYN/ACK [SACK, WSCALE]

Processing New STAT frames

37

Frame Fields (ex. used for RTT estimation)STAT
Type of the frame

=
Parameter to a generic protocol operation

int process_frame(args) {

for each frame {

ret = process_frame_param(frame.type, args);

// Some processing

}

return val;

}

int process_stat_frame(args) {

}

PRE

POST

REPLACE

VM
// Code processing STAT

return ret;

Trusting Plugins

38

Client Server

Verifier A Verifier B Verifier
C

...
Plugin

Repository

Developer

Publish Check own bindings

Lookup for proofPull and build Merkel Tree

Ask plugin and proof from B

Give plugin and B authentication path

Proof of Consistency

39

H(‘multipath’) = ‘010’011010...

h010 = H(‘multipath’||multipath bytecode)

h01 = H(h010 ||
h011)

01011
10010

0 1

...
h011

h0 = H(h00 || h01)

Root = H(h0 || h1)

...
h00

0 1

0 1

...
h1

Provided
Authentication

PathRecomputed

Compare with stored
verifier Root

Plugin Overhead

40

10 Gbps

Plugin Mean Goodput
PQUIC, no plugin 1104 Mbps

Monitoring 1037 Mbps

Multipath 1 path 757 Mbps

Monitoring + Multipath 1 path 714 Mbps

Intel Xeon E5-2640 v3

JITed eBPF ~2x slower than native code
Get/set interface ~5x slower than direct access

-7% goodput
+8% CPU instructions

Verifying the Termination of Plugins with T2

41

Plugin Lines of C Code # Bytecodes Proven terminating

Monitoring 500 14 13

VPN 500 11 8

Multipath 2600 32 29

FEC 2500 51 37

