
Automation for 
Networks and more

Christoff Visser – IIJ Lab

christoff@iij.ad.jp

1



Introduction

• Crash course for commonly used tools for network automation

• Not an in-depth tutorial
• Give you an idea how you could use automation in your day to day
• Small version of tutorial hosted by myself and Anurag Bhatia at APNIC 56

• Resources will be available in Gitlab
• Slides
• Tutorials
• Instructions

• Link: https://bit.ly/iijlab_automate_techtrend2023

2

https://bit.ly/iijlab_automate_techtrend2023


Agenda

• Docker + Containers

• Ansible

• Gitlab + CI/CD

• ChatGPT

3



Automation as a tool

4



Automation as a tool

5



Automation as a tool

6



Why do we automate?

• Increase productivity

• Reduce cost

• Minimise errors

• Increased capability

7



Why do we should you automate?

• Increase productivity

• Reduce cost

• Minimise errors

• Increased capability

Spend less time on 
boring and tedious tasks

8



Event driven automation

Process

ChangeObserve

9



Docker and containers

10



Typical software deployment workflow

Download 
package

Install 
dependencies

Configure 
database

Configure 
package Deploy!

11



Challenges with traditional software 
deployment 
1. Takes time to go through documentation, install package and 

maintain it

2. Time consuming process to transfer software to a different server

3. Prone to errors and mistakes

4. “Works on my system”

5. Dependency conflicts

12



Introducing 
containers

13



Virtual Machines vs Containers

14



Container based software deployment

Download 
image Configure Deploy!

15



Choose OS

Install 
dependencies

Install package

Configure 
package

Deploy!

Building a Container - ansible

16



Running docker ad-hoc

17



Docker ad-hoc challenges

• Gets complicated the more arguments are passed

• Hard to remember all previously used arguments

• Easy to misconfigure when running multiple ad-hoc containers

18



docker-compose.yml

• Single yaml text file for multiple containers

• Easier to read and includes all instructions for all containers

• Simplify creating/attaching volumes to bind to

• Ensure you’re exposing only what you need to

• Simplify upgrading and maintaining containers

19



Docker compose - smokeping

20



Notes on backup

• Docker containers are reproducible. No need to backup

• User data is stored using volumes or bind mounts
• Only these need to be backed up

• Popular tools like Restic Duplicati (can be run as docker 
container)

• Always encrypt data before storing it on the cloud

21



Some containers to play with
• RIPE Atlas - https://hub.docker.com/r/jamesits/ripe-atlas

• HTML 5 speedtest - https://hub.docker.com/r/adolfintel/speedtest

• iperf3 - https://hub.docker.com/r/networkstatic/iperf3

• Nextcloud - https://hub.docker.com/_/nextcloud

• Docker-speedtest-grafana - https://github.com/frdmn/docker-speedtest-grafana

• Kerberos - https://doc.kerberos.io/opensource/installation#docker

• Nginx Proxy Manager - https://nginxproxymanager.com/

• Linux-server.io - Many great images actively maintained by the open source community

22

https://hub.docker.com/r/jamesits/ripe-atlas
https://hub.docker.com/r/adolfintel/speedtest
https://hub.docker.com/r/networkstatic/iperf3
https://hub.docker.com/_/nextcloud
https://github.com/frdmn/docker-speedtest-grafana
https://doc.kerberos.io/opensource/installation
https://nginxproxymanager.com/


For more information:

• Gitlab repo:
• More in detailed information
• Tutorials and labs to follow
• Guide for minimising the size of 

docker images

• Link to docker section

23

https://gitlab.com/vmastar/automation_tutorial/-/tree/main/1.%20Docker%3Fref_type=heads


24



Automation

• Execute a task without active human interaction

• Commonly done with scripting (bash, python, etc.)

• Focus typically is single task and not overall workflow

25



Orchestration

• Execute a workflow without human interactions

• Requires a platform to achieve complex workflow executions

• Focus workflow involving multiple tasks, with scheduling, 
different devices/services etc.

• Combination of automation

26



Possible tasks to automate/template

• Basic configuration - hostname, SNMP, NTP, AAA, DNS resolvers 
etc
• Configuration of firewall
• Configuration of BGP session
• Local account management
• Configuration of interface
• Configuration of backup

• And anything else you do regularly

27



Orchestration tool options

• Ansible

• Saltstack

• Puppet

• Chef

• And more…

28



Introduction to Ansible

• Popular open source tool for Orchestration
• Agentless i.e. target devices do not need to run any software
• Python based
• Supports various networking devices – Cisco, Juniper, Mikrotik, 

Huawei, VyOS, Ubnt, Dell and more
• Supports almost every OS – Linux, MacOS, Windows via WSL
• Most are “idempotent”: Only do something when a change is 

required
• By default comes with CLI & not web UI (Web UI can be added via 

Ansible AWX or Ansible semaphore)

29



Ansible Key Concepts

Image source:
https://geekflare.com/ansible-basics/

30

https://geekflare.com/ansible-basics/


Writing a playbook

• Written in yaml format (.yml). It’s easy to read format for humans as 
well as computers

• Yaml can be written in any text editor but there’s risk of breaking 
yaml syntax and thus a basic code editor like VSCode is a good 
option 

• One can write playbook on locally installed VSCode on Linux/OS 
X/Windows & save it on remote server using SSH within VSCode

• Use a Ansible extension in VSCode to ensure it throws error if syntax 
is broken

31



Sample playbook - simple

---
- hosts: routers

tasks:
- name: Setup hostname of Router

vyos.vyos.vyos_system:
host_name: "{{ inventory_hostname }}"

32



Sample playbook - more complex

33



Sample playbook – even more complex

34



For more information

• Gitlab repo:
• More in detailed information
• Tutorials and labs to follow

• Link to Ansible Section

35

https://gitlab.com/vmastar/automation_tutorial/-/tree/main/2.%20Ansible%3Fref_type=heads


Gitlab and CI/CD

36



Introducing git

37



Introducing git

38



Distributed Workflows

Image source: https://www.git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
39

https://www.git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows


Where to store the repository?

• GitHub, Gitlab, Bitbucket, AWS CodeCommit

• Gitlab
• Self-host your own instance
• Some more freedom with the CI/CD

40



What is CI/CD

• Continuous Integration (CI)

• Continuous Delivery (CD)

• Continuous Deployment (CD)

41



Where does the code run

• Code typically runs inside a docker container as a job

• One can use available popular containers like alpine, ubuntu, 
centos, or application specific containers 

• One can also build own container using base image of any of 
the available containers if installing multiple packages

42



And where does the job run?

• Typically a runner - can be shared runner offered by popular hosted Git 
providers like Gitlab, Github etc and also dedicated runners which you can 
host on your machine (desktop/server)

• Runner can be a program installed & running on machine or simply a 
docker image with special permissions 

• One can have multiple runners configured in a project & use them as 
needed across various tasks. E.g task 1 on runner on server1, task 2 on 
runner on server2 etc

• Good idea to have basic understanding of docker ecosystem to make 
efficient use of CI/CD

43



Key Objective

• Make use of extremely low code, fast to deploy tool like Ansible 
to automate or semi-automate repetitive tasks 

• Trigger Ansible as a docker container running Ansible on runner 
of your choice 

• Trigger (Ansible + Docker) via CI/CD pipelines

44



Stage & Jobs

• Config is divided in stages

• Each stage can have one or more jobs which run in parallel (by default)

• Stages run sequentially

• Any job can have dependency on any other job if needed



Typical design of pipeline

• Build containers

• Compile code

• Deploy containers

• Deploy code

• Test code in 
containers

• Deploy to 
production

• Interact with 
production system

• e.g., Revert to 
previous state

47



Sample .gitlab-ci.yml

48



Final Workflow result

49



For more information

• Gitlab repo:
• More in detailed information
• Introduction to git slides
• Tutorials and labs to follow

• Link to CI/CD section

50

https://gitlab.com/vmastar/automation_tutorial/-/tree/main/3.%20CICD%3Fref_type=heads


ChatGPT

58



The 5 stages of grief

59



The 5 7 stages of grief ChatGPT

https://twitter.com/solomania/status/1625458520811339777 60

https://twitter.com/solomania/status/1625458520811339777


Benefits vs Risks

61



Benefits vs Risks

• Automate mundane things

• Text generation

• Virtual writing assistant

• Generate summaries

• Write, debug and explain code

62



Benefits vs Risks

• Automate mundane things

• Text generation

• Virtual writing assistant

• Generate summaries

• Write, debug and explain code

• Good for explaining and 
introductions to topics

• Misinformation and 
disinformation (Hallucinating)

• Privacy concerns

• Outputs can be “generic”

• Biased

• Predictive not Smart

• General not single purpose

• Not good for complex projects

63



Benefits vs Risks

• Automate mundane things

• Text generation

• Virtual writing assistant

• Generate summaries

• Write, debug and explain code

• Good for explaining and 
introductions to topics

• Misinformation and 
disinformation (Hallucinating)

• Privacy concerns

• Outputs can be “generic”

• Biased

• Predictive not Smart

• General not single purpose

• Not good for complex projects

64



Benefits vs Risks

• Automate mundane things

• Text generation

• Virtual writing assistant

• Generate summaries

• Write, debug and explain code

• Good for explaining and 
introductions to topics

• Misinformation and 
disinformation (Hallucinating)

• Privacy concerns

• Outputs can be “generic”

• Biased

• Predictive not Smart

• General not single purpose

• Not good for complex projects

65



Benefits vs Risks

• Automate mundane things

• Text generation

• Virtual writing assistant

• Generate summaries

• Write, debug and explain code

• Good for explaining and 
introductions to topics

• Misinformation and 
disinformation (Hallucinating)

• Privacy concerns

• Outputs can be “generic”

• Biased

• Predictive not Smart

• General not single purpose

• Not good for complex projects

66



Benefits vs Risks

• Automate mundane things

• Text generation

• Virtual writing assistant

• Generate summaries

• Write, debug and explain code

• Good for explaining and 
introductions to topics

• Misinformation and 
disinformation (Hallucinating)

• Privacy concerns

• Outputs can be “generic”

• Biased

• Predictive not Smart

• General not single purpose

• Not good for complex projects

67



How to not use ChatGPT

• Open ChatGPT

• ????

• Profit!!!

68



How to use ChatGPT?

69



70



71



Conclusion

72



Conclusion - backup

• Automation is a tool – not a crutch
• Can be very powerful
• But with great power…

• Docker containers
• Self contained applications
• Portable and lightweight

• Ansible
• Clean up your scripts to be more readable
• Easy to backup using git

• Git + CI/CD
• Add accountability
• Automate your workflow

73



Questions?

• Gitlab public wiki
• Slides
• Examples
• Further resources

• Link: https://bit.ly/iijlab_automate_techtrend2023

• Join us at APNIC 56!
• https://academy.apnic.net/en/events?id=a0B2e000000eANMEA2

• christoff@iij.ad.jp

74

https://bit.ly/iijlab_automate_techtrend2023
https://academy.apnic.net/en/events?id=a0B2e000000eANMEA2
mailto:christoff@iij.ad.jp

