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Introduction

• Crash course for commonly used tools for network automation

• Not an in-depth tutorial
• Give you an idea how you could use automation in your day to day
• Small version of tutorial hosted by myself and Anurag Bhatia at APNIC 56

• Resources will be available in Gitlab
• Slides
• Tutorials
• Instructions

• Link: https://bit.ly/iijlab_automate_techtrend2023
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Agenda

• Docker + Containers

• Ansible

• Gitlab + CI/CD

• ChatGPT
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Automation as a tool
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Why do we automate?

• Increase productivity

• Reduce cost

• Minimise errors

• Increased capability
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Why do we should you automate?

• Increase productivity

• Reduce cost

• Minimise errors

• Increased capability

Spend less time on 
boring and tedious tasks

8



Event driven automation

Process

ChangeObserve
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Docker and containers
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Typical software deployment workflow

Download 
package

Install 
dependencies

Configure 
database

Configure 
package Deploy!
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Challenges with traditional software 
deployment 
1. Takes time to go through documentation, install package and 

maintain it

2. Time consuming process to transfer software to a different server

3. Prone to errors and mistakes

4. “Works on my system”

5. Dependency conflicts
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Introducing 
containers
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Virtual Machines vs Containers
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Container based software deployment

Download 
image Configure Deploy!
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Choose OS

Install 
dependencies

Install package

Configure 
package

Deploy!

Building a Container - ansible
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Running docker ad-hoc
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Docker ad-hoc challenges

• Gets complicated the more arguments are passed

• Hard to remember all previously used arguments

• Easy to misconfigure when running multiple ad-hoc containers
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docker-compose.yml

• Single yaml text file for multiple containers

• Easier to read and includes all instructions for all containers

• Simplify creating/attaching volumes to bind to

• Ensure you’re exposing only what you need to

• Simplify upgrading and maintaining containers
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Docker compose - smokeping
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Notes on backup

• Docker containers are reproducible. No need to backup

• User data is stored using volumes or bind mounts
• Only these need to be backed up

• Popular tools like Restic Duplicati (can be run as docker 
container)

• Always encrypt data before storing it on the cloud
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Some containers to play with
• RIPE Atlas - https://hub.docker.com/r/jamesits/ripe-atlas

• HTML 5 speedtest - https://hub.docker.com/r/adolfintel/speedtest

• iperf3 - https://hub.docker.com/r/networkstatic/iperf3

• Nextcloud - https://hub.docker.com/_/nextcloud

• Docker-speedtest-grafana - https://github.com/frdmn/docker-speedtest-grafana

• Kerberos - https://doc.kerberos.io/opensource/installation#docker

• Nginx Proxy Manager - https://nginxproxymanager.com/

• Linux-server.io - Many great images actively maintained by the open source community
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For more information:

• Gitlab repo:
• More in detailed information
• Tutorials and labs to follow
• Guide for minimising the size of 

docker images

• Link to docker section
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https://gitlab.com/vmastar/automation_tutorial/-/tree/main/1.%20Docker%3Fref_type=heads


24



Automation

• Execute a task without active human interaction

• Commonly done with scripting (bash, python, etc.)

• Focus typically is single task and not overall workflow
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Orchestration

• Execute a workflow without human interactions

• Requires a platform to achieve complex workflow executions

• Focus workflow involving multiple tasks, with scheduling, 
different devices/services etc.

• Combination of automation
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Possible tasks to automate/template

• Basic configuration - hostname, SNMP, NTP, AAA, DNS resolvers 
etc
• Configuration of firewall
• Configuration of BGP session
• Local account management
• Configuration of interface
• Configuration of backup

• And anything else you do regularly
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Orchestration tool options

• Ansible

• Saltstack

• Puppet

• Chef

• And more…
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Introduction to Ansible

• Popular open source tool for Orchestration
• Agentless i.e. target devices do not need to run any software
• Python based
• Supports various networking devices – Cisco, Juniper, Mikrotik, 

Huawei, VyOS, Ubnt, Dell and more
• Supports almost every OS – Linux, MacOS, Windows via WSL
• Most are “idempotent”: Only do something when a change is 

required
• By default comes with CLI & not web UI (Web UI can be added via 

Ansible AWX or Ansible semaphore)
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Ansible Key Concepts

Image source:
https://geekflare.com/ansible-basics/
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Writing a playbook

• Written in yaml format (.yml). It’s easy to read format for humans as 
well as computers

• Yaml can be written in any text editor but there’s risk of breaking 
yaml syntax and thus a basic code editor like VSCode is a good 
option 

• One can write playbook on locally installed VSCode on Linux/OS 
X/Windows & save it on remote server using SSH within VSCode

• Use a Ansible extension in VSCode to ensure it throws error if syntax 
is broken
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Sample playbook - simple

---
- hosts: routers

tasks:
- name: Setup hostname of Router

vyos.vyos.vyos_system:
host_name: "{{ inventory_hostname }}"
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Sample playbook - more complex
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Sample playbook – even more complex
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For more information

• Gitlab repo:
• More in detailed information
• Tutorials and labs to follow

• Link to Ansible Section
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Gitlab and CI/CD
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Introducing git
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Introducing git
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Distributed Workflows

Image source: https://www.git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
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Where to store the repository?

• GitHub, Gitlab, Bitbucket, AWS CodeCommit

• Gitlab
• Self-host your own instance
• Some more freedom with the CI/CD
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What is CI/CD

• Continuous Integration (CI)

• Continuous Delivery (CD)

• Continuous Deployment (CD)
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Where does the code run

• Code typically runs inside a docker container as a job

• One can use available popular containers like alpine, ubuntu, 
centos, or application specific containers 

• One can also build own container using base image of any of 
the available containers if installing multiple packages
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And where does the job run?

• Typically a runner - can be shared runner offered by popular hosted Git 
providers like Gitlab, Github etc and also dedicated runners which you can 
host on your machine (desktop/server)

• Runner can be a program installed & running on machine or simply a 
docker image with special permissions 

• One can have multiple runners configured in a project & use them as 
needed across various tasks. E.g task 1 on runner on server1, task 2 on 
runner on server2 etc

• Good idea to have basic understanding of docker ecosystem to make 
efficient use of CI/CD
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Key Objective

• Make use of extremely low code, fast to deploy tool like Ansible 
to automate or semi-automate repetitive tasks 

• Trigger Ansible as a docker container running Ansible on runner 
of your choice 

• Trigger (Ansible + Docker) via CI/CD pipelines
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Stage & Jobs

• Config is divided in stages

• Each stage can have one or more jobs which run in parallel (by default)

• Stages run sequentially

• Any job can have dependency on any other job if needed



Typical design of pipeline

• Build containers

• Compile code

• Deploy containers

• Deploy code

• Test code in 
containers

• Deploy to 
production

• Interact with 
production system

• e.g., Revert to 
previous state
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Sample .gitlab-ci.yml
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Final Workflow result

49



For more information

• Gitlab repo:
• More in detailed information
• Introduction to git slides
• Tutorials and labs to follow

• Link to CI/CD section

50
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ChatGPT
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The 5 stages of grief
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The 5 7 stages of grief ChatGPT

https://twitter.com/solomania/status/1625458520811339777 60
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Benefits vs Risks
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Benefits vs Risks

• Automate mundane things

• Text generation

• Virtual writing assistant

• Generate summaries

• Write, debug and explain code
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Benefits vs Risks

• Automate mundane things

• Text generation

• Virtual writing assistant

• Generate summaries

• Write, debug and explain code

• Good for explaining and 
introductions to topics

• Misinformation and 
disinformation (Hallucinating)

• Privacy concerns

• Outputs can be “generic”

• Biased

• Predictive not Smart

• General not single purpose

• Not good for complex projects
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How to not use ChatGPT

• Open ChatGPT

• ????

• Profit!!!
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How to use ChatGPT?
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Conclusion
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Conclusion - backup

• Automation is a tool – not a crutch
• Can be very powerful
• But with great power…

• Docker containers
• Self contained applications
• Portable and lightweight

• Ansible
• Clean up your scripts to be more readable
• Easy to backup using git

• Git + CI/CD
• Add accountability
• Automate your workflow

73



Questions?

• Gitlab public wiki
• Slides
• Examples
• Further resources

• Link: https://bit.ly/iijlab_automate_techtrend2023

• Join us at APNIC 56!
• https://academy.apnic.net/en/events?id=a0B2e000000eANMEA2

• christoff@iij.ad.jp
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