

1 OQutline I

© Introduction

Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion
000000 000 000000 00000000

1 Decision-Making and Optimality (history-ish) 12

[+] the principles of mathematics were the principles of all things.
ARisTOTLE, Metaphysics, 350 BCE

Light travels between points through the path of shortest length.
HERON OF ALEXANDRIA, (10-75) CE

Honeycomb €enjeeture Theorem

A regular hexagonal grid or honeycomb has the least
total perimeter of any subdivision of the plane into
regions of equal area.

It was proven by T.C. HALES in 1999.

Figure: Worker Bees On

Nature optimizes! But slowly, over numerous iterations, Honeycomb Jean BEAUFORT

through a trial and error process.

Introduction Satisfaction Problems
0e00000

1 Overview of a Decision-Making process E

Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion
00e0000 000 000000 00000000

1 Alisu and Bob 4

Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion
000e000 000 000000 00000000

1 Prescriptive vs. Descriptive approaches 5

Prescriptive Approach (e.g. Optimization)

» Focus: Determining the best course of action.
» Primary Tool: Mathematical models.
» Objective: Optimize a specific criterion.

» Example: Efficient resource allocation, route optimization.

Predictive Approach (e.g. Machine Learning)

» Focus: Making informed predictions based on data.
» Primary Tool: Machine learning models.
» Objective: Predict future outcomes or classify data.

> Example: Predicting customer behavior, image recognition.

Introduction
0000e00

1 Complementary Nature

Coexistence

» Prescriptive and Predictive approaches are not mutually exclusive.

> Often complement each other for holistic decision-making.

Synergy

» Optimization can use insights from predictive models.

» Machine Learning (predictive models) can use optimization to improve
performance. (This is a very hot topic in Al)

» Some problems benefit from both approaches (hybrid models).
» Example: Using predictive analytics for demand forecasting and optimization for
inventory management.

Introduction
00000e0

6

1 When to Use Prescriptive and Predictive Approaches 7

1

N

Introduction
000000

Consider Problem Characteristics
> Complexity:

- Use Prescriptive (Optimization) for complex decision-making problems where finding the best solution is critical.

> Data-Driven:
- Employ Predictive (Machine Learning) when historical data is abundant and patterns need to be extracted.
Data Availability and Quality
> Data Availability:
- If extensive data is accessible, consider Predictive approaches to leverage it.
> Data Quality:
- Ensure data quality; inaccurate data can lead to flawed predictions.
Decision Urgency
> Immediate Decisions:
= Use Prescriptive approaches for real-time or critical decisions with little room for error.
> Future Planning:
- Predictive approaches are valuable for long-term planning and trend analysis.
Objective Types
> Objective Clarity:
- When objectives are well-defined and measurable, Prescriptive methods are suitable.
> Objective Uncertainty:
- For objectives that are uncertain or evolving, Predictive approaches may be more adaptable.

A

2 Outline Is

® Satisfaction Problems

Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion
0000000 000 000000 00000000

2 Simple and fun: Sudoku

|9

A simple variant of prescriptive problems are Satisfaction Problems. They are a class of
problems where the goal is to find a solution that satisfies a set of constraints. Let us

consider the following example: Sudoku.

Sudoku rules

» Each row, column and 3x3 subgrid
must contain the numbers 1 to 9.

» Each number can only appear once in
each row, column and subgrid.

Some numbers are already given as clues.

Satisfaction Problems
oeo

5|3 7
6 119]|5
98 6
8 6 3
4 8 3 1
7 2 6
6 2|8
4(1(9 5
8 719

Figure: a Sudoku layout generated
by the GNU program Su Doku Solver
- Lawrence Leonard Gilbert

A

2 Simple and fun: Sudoku 9

A simple variant of prescriptive problems are Satisfaction Problems. They are a class of
problems where the goal is to find a solution that satisfies a set of constraints. Let us
consider the following example: Sudoku.

5(3 7
6 1(9(5
sudoku(n) 918 6
N =n
m = JuMP.Model(CBLS.Optimizer) 8 6 3
(m, X[1:N, 1:N] < N, Int) 4 8 3 1
" : . 7 2 6
(m, X[i,:] AllDifferent())
(m, X[:,i] in ALLDifferent()) 6 218
41119 5
, (Jxn+1):(nk(j+1))1) Allpifferent()) 8 7 9

Figure: a Sudoku layout generated
by the GNU program Su Doku Solver

— Lawrence Leonard Gilbert

Satisfaction Problems
oeo

2 A bit of magic: Magic Square 10

Now, let us consider a classical mathematical problem called Magic Square (Japan has
a strong history of solving Magic Square throughout history).

2 7 6 =15

Magic Square rules 9 5 1 =15

» Each number can only appear once. 4 3 8 =15
» The sum of each row, column and "2 T R Y

diagonal must be equal. 15 151515 15

Size 3 x 3 is the minimal non-trivial . ,
Figure: a 3 x 3 Magic Square

instance. instance with magic number 15 —
Sam Ley (Phidauex)

A

Satisfaction Problems
ooe

2 A bit of magic: Magic Square 10

Now, let us consider a classical mathematical problem called Magic Square (Japan has
a strong history of solving Magic Square throughout history).

magic_square(n, { })
N n
model = JuMP.Model(CBLS.Optimizer)
magic_constant n (N)

\l

6 =15
1 =15

8 =15
(model, [X[i,i] i n] SumEqualParam(magic_constant)) 1

Vol
15 151515 15

(model, X[1:n, n] N, Int)
(model, vec(X) AllDifferent())

n
(model, X[i,:] SumEqualParam(magic_constant))
(model, X 1 SumEqualParam(magic_constant))

- B O N
w o

(model, [X[i,n i] i n SumEqualParam(magic_constant))

model, X

Figure: a 3 x 3 Magic Square
magic_square(n; modeler = :JuMP) . . .
instance with magic number 15 -
Create a model for the magic square problem of order 'n°. The ‘modeler' argument accepts Sam Ley (Phidauex)
:JuMP (default), which refer to the solver the JuMP model.

magic_square(n; modeler :JuMP) = magic_square(n, Val(modeler))

Satisfaction Problems
ooe

3 Outline I

© Optimization Problems

Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion
0000000 000 00000 00000000

3 A problem to rule them all: Golomb Ruler 12

A more advanced variant of prescriptive problems are Optimization Problems. They are
a class of problems where the goal is to find a solution that optimizes a specific
criterion. Let us consider the following example: Golomb Ruler.

Golomg Ruler description 0 1 4 6
» Given n marks, each pair of marks has : 1 I I > I
a different distance. <_:—.4 3
> The objective is to minimize the size of 5
the ruler, i.e. the distance between the 6
first and last marks. Figure: a perfect Golomb ruler with

q 4 marks — Khrishna VEDbALA
A perfect Golomb Ruler is a Golomb Ruler

with the smallest possible size.

A

Optimization Problems
000000

3 A problem to rule them all: Golomb Ruler 12

A more advanced variant of prescriptive problems are Optimization Problems. They are
a class of problems where the goal is to find a solution that optimizes a specific
criterion. Let us consider the following example: Golomb Ruler.

dist_different(X) abs(X[1] X[2]) abs(X[3] X[4])

golomb(n, L=n2)

m = JuMP.Model(CBLS.Optimizer) O 1 4 6
L 1 1]
@variable(m, 0 < X[1:n] L, Int) 1 2
>
onstraint(m, X AllDifferent()) 3
nt(m, X Ordered()) 4
5
; : . 6
1:(n 1), j (i 1):n, k i:(n i), dL (k 1):n
j (k, 1) || . :
raint(m, [X[i], X[j], X[k], X[1]] Predicate(dist_different)) Flgure: a perfect Golomb ruler with

4 marks - Khrishna VEDALA

@objective(m, Min, ScalarFunction(maximum))
m, X

A

Optimization Problems
000000

3 A personal favorite: Network flow problems 13

Nidnj Bestich

Ust.lim sk

Lesosbisk

Wovasbiis e " @S
lxi. i Hasnojar:

Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion
0000000 000 00e000 00000000

3 A personal favorite: Network flow problems

Maximum Flow problem

2/2

2/2

s 2 t s /
2 4 2/2

» Amount of flow (data/matter/anything) from a source s to a sink t

» Introduces in 1952 to study the soviet railway system
> Applications to various fields of research, among others:

> Scheduling problems: course scheduling, task scheduling, transports ...
> Matching problems: colors, pair of individuals, ...
> Image Segmentation

» Can be solved efficiently (tractable ~ polynomial algorithm)

Optimization Problems
00e000

4/4

2/4

3 Network Interdiction problems

Classical max-flow

Introduction Satisfaction Problems
0000000 000

|14
2/2 4/4
ev:. g
Optimization Problems Free-time & Conclusion
000000 00000000

3 Network Interdiction problems |14

Classical max-flow

2/2 4/4
- -~
g N e N N
’ S ’
2/2 5 N
7
A ’
SL2/2 . 2/4
Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion

0000000 000 000000 00000000

3 Network Interdiction problems |14

Classical max-flow

2/2 4/4
/"_N\\ /”-~\\\
Y
T2 N s
7
A ’
Sa2/2 L 2/4
Network Interdiction
2/2 0/4
- - = ~
p N
4 N
2/2 ‘ N
Q
0/2 4/4
Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion

0000000 000 000000 00000000

3 Network Interdiction problems

Classical max-flow

Network Interdiction
2/2 0/4.

. N
4 N
2/2 ¢ S
Q
0/2 4/4

Introduction Satisfaction Problems
0000000 000

Optimization Problems
000000

3/4

2/4

|14
Free-time & Conclusion
00000000

3 Specialist approach for Adaptive Flow

max > fe)(1—u(e)

o eeE
fer
(1 € argmin max ST F(s, i)
" f! (s,1)EE

f'(e) < f(e)(1—p(e)), forallee E
> fGN = > fllk)=o,
i:(i,j)EE k:(j,k)eE
forallje V\ {s,t}
f(e) >0, foralle€ E.

P> Upper level is classical max flow problem with an objective function variation coming from the
attacked links

P Lower Level is a Network Interdiction problem on a given flow

Optimization Problems
0000e0

3 Specialist approach for Adaptive Flow 15

max 3 (f(e)di — f(e)vy)

eckE
fer
Svp€min S (5~ F(e)

H00 ek
dij+o0j—oi =0, forall (i,j) € E,i#s,j#t (1)
O+ o5 21, for all j such that (s,) € E (2)
dit —oi =20, for all i such that (¢,i) € E (3)
dij =0, forall (i,j) € E (4)
vi < (0, 1)), for all (i) € E (5)
vij < djj, for all (i,)) € E (6)
vij =2 0, forall (i,j) € (7)
> wle) =k (8)
eCE
w(e) € {0, 1}, forall (i,j) € E (9)

\ isfaction Problems Optimization Problems

0000e0

3 A simpler model 16

The maximum network flow problem is a dual case of the minimum cut problem. It is
also true for the interdiction version.

mincut(graph, source, sink, interdiction = 0)
m JuMP.Model(CBLS.Optimizer)
n size(graph, 1)
separator n 1

@variable(m, © X[1:separator] n, Int)

(m, [X[source], X[separator], X[sink]] Ordered())

aint(m, X AllDifferent())

obj (x) o_mincut(graph, x ; interdiction)
jective(m, Min, ScalarFunction(obj)) Figure; a mincut example

m, X

Here the model is much simpler, but the problem is still NP-hard. So we look for good
enough solutions.

A

Optimization Problems
00000e

4 Qutline |17

© Free-time & Conclusion

Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion
0000000 000 000000 0000000

4 Conclusion 18

Most specialists of a field cannot do the following;:
> Iterates over billions of years such as natural processes
» Write complex mathematical models that requires weeks of work for a scientist
specialized in Optimization

> Fine-tune decision-making software to be able to make decisions in real-time

Model-as-you-speak framework

We propose a model-as-you-speak framework that allows non-specialists to solve
complex decision-making problems.

We take care of the solving part, you can take care of making models of you field
specialties!

Free-time & Conclusion
O@000000

4 Support you from the shadows 19

Sudoku 16x16

[naive
[automated
I semi-auto
1 [state-of-the-art
10! |-
2
K] 0
5 100 |-
°
o1
z
o
]
E
1071 [
1072 [
Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion

0000000 000 000000 00800000

4 Framework 120

Our model-as-you-speak framework is available on GitHub
https://github.com/JuliaConstraints/LocalSearchSolvers.jl

» The framework is based on the JuMP (Julia for
Mathematical Programming) ecosystem

» Works natively with multithreaded and distributed
computing

» Can be used with any solver supported by JuMP
(and we add more solvers every day ... or month
maybe)

Free-time & Conclusion
000@0000

https://github.com/JuliaConstraints/LocalSearchSolvers.jl

4 Tl"y 1 |21

Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion
0000000 000 000000 00008000

4 Tl"y 2 | 22

Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion
0000000 000 000000 0O0000@e00

4 Tl"y 3 |23

Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion
0000000 000 000000 0O00000e0

| 24

Introduction Satisfaction Problems Optimization Problems Free-time & Conclusion
0000000 000 000000 O000000e

	Introduction
	Satisfaction Problems
	Optimization Problems
	Free-time & Conclusion

