Memory Management in the Cloud

Pierre Louis Aublin
IlJ Research Laboratory
2023%F12819H



Meet Tanaka san

e Software engineer at Super Infinity Cloud Provider (laaS)

SUPER INFINITY CLOUD

PROVIDER




Tanaka san in charge of VM infrastructure
e VM allocation
e VM migration

e Efficient resource utilization




VM Memory usage example

Host Host 2 Assumptions:
... e Each host has 3 CPU cores
... e At most 3 VMs machine per
... host
Network link
L
L

Host 3 Host 4



A new VM needs to be allocated

Host 1 Host 2 New VM!
HEN HENR
HEN |
]|
Network link Where to allocate?

“%'

e e

-
W

Host 3 Host 4 ESENEIENE



Migrate VMs

Host 1 Host 2
~ .
Network link
Host 3 Host 4

New VM!

Where to allocate?

“%'

e e

-
W




Allocate new VM

Host 1 Host 2 New VM!
B HE
B
HEE
Network link Success!
18
B olg’

Host 3 Host 4



Is migration the solution?

Host

1

Host 3

Host 4

Need to move data/computation across
the cluster

Interruption of service for the migrated
VMs



Cluster is full; Memory stranding appears...

Host 1

Host 2

=

Host 3

Host 4

Unused memory

Cannot be used to allocate a new VM
o "All cores have been rented, but
there is still free memory on the
server"

Microsoft Azure reports >25% of stranded
memory

Studies at Microsoft, Google, Alibaba
show 50% of memory is not utilized

Zhang et al., "Redy: Remote Dynamic Memory Cache", 2021



Let's solve memory stranding via memory pooling!

e Memory pooling

(@)

(@)

(@)

Dynamic memory allocation scheme
Divides system memory into blocks
Each block can be allocated to / reclaimed from a VM to follow memory usage

Host 3

Host 4

-

Host 3

Host 4

-

Host 3

Host 4

10




Where to store the reclaimed memory?

N EEN - g

Host 3 Host 4 Register: 0.2ns

Ay

1



Network-attached memory

e Remote Direct Memory Access
o Access a computer's memory from another computer
o  Operating System/CPU not involved
o Low-latency operation

NIC NIC

DRAM \\ RDMA
L

CPU TCP/IP




VM memory access via RDMA

Scenario 1:
VM migration

Scenario 2: no
VM migration

e Access to.VM reclaimed memory ("cold memory") incurs latency penalty

Host 3

RDMA

RDMA

Host 4

compared to DRAM access

RDMA

Host 5

13



Memory disaggregation

Separate memory from the compute resources

Memory of a single machine can be shared across a network of servers

Improves memory utilization and scalability

Scenario 2: no
VM migration

Host 3

RDMA

Host 4

RDMA

14



Leap: a solution to manage remote memory

e '"Effectively Prefetching Remote Memory with Leap”

o Al Maruf and Chowdhury. Michigan university
o USENIXATC 2020

e Problem

o Remote memory access is slow (us compared to ns)
o This slows down memory intensive applications
o How do we choose which data to allocate remotely?

TT
amm

Host 1 Host 2




Hot vs Cold memory pages

e Hot memory page .

(@)

(@)

Frequent access

Move to faster, local memory for better performance

Cold memory page

(@)

(@)

Infrequent access

Can be moved to slower, farther memory

RDMA

Host 1

Host 2

16



Leap architecture

Implemented in Linux kernel
Applications not modified

(@)

Online prefetcher

o ldentify remote memory
accesses patterns
Local cache
o Avoid pollution
o Increase cache hit rate

https://qithub.com/SymbioticLab/Leap

T
Cache I Process 1 | | Process 2 | User
Hit 027us—— B S —————— —-— = Space
il l File Read/Write | L Page Fault
El _T— Virtual File System VFS | Memory Management|, | MMU gerne]
2.1us (VFS) Page Cache Unit (MMU) Page Cache | Space

Cache
Miss

4.3us

Leap
i it b e 1t i ot i i i i e
I = S Prefetcher  peoeeeecevesesssensnneess
1 Process Specific | i T rend CPreg?;d:
1 Page Access Tracker “"T: Detection : : AICe
1 Easasussesacsssans i i...Generation
X '_E_EHD_.D_‘ ..........................
H OO | Fager Cache Eviction

Remote Memory

Storage

17


https://github.com/SymbioticLab/Leap

Leap performance evaluation

800
600
400
200

Completion Time (s)

System setup
o 56 Gbps Infiniband cluster

Disk

o Each machine: 64 GB RAM, 2x Intel Xeon E5-2650 v2 (16 cores)

Real-world benchmarks

o PowerGraph, NumPy, VoltDB, Memcached

Performance gain: up to 10x compared to Infiniswap, a state-of-the-art solution

N
=S z
g g
» =
z £
Z. =2
S 2|2 5 o= 2‘
< .2 |2 ©
: J|2E |8 S
l+ l+
QE QE
a a

100%

(a) PowerGraph Completion Time

= - <
o a [
o v g
a =N =

s2E2¢g

D-VMM-+Leap

D-VMM-+Leap

(b) NumPy Completion Time

D-VMM-+Leap

=S8 g8

TPS (Thousands)
—J

38.6 37.0 37.0

35.6

Disk [Never finishes

¥ 2 &% 2 & s 2
AEgJ4RE SR E
a = a 2 a =
= E 2
= 3 =
A a =
100%
(¢) VoltDB Throughput

117

& a & ~
- eﬂ
L~ N | -!-1

—
[
=

97

80

OPS (Thousands)
Disk | Never finishes

¥ 2 5|3 2 % z g

SEgJRE{IRE 4

a = R = a 2

g g g

a a a
100%

(d) Memcached Throughput

18



Where to store the reclaimed memory? (Revisited)

Host 3

Host 4

+

Register- 0.2ns
1 40ns

l o

10-40ps

19



Compute
E<press
Link

e Compute-eXpress Link

O
O

Industry-backed open standard
https://www.computeexpresslink.org/

e High-speed cache-coherent
interconnect

@)

Built on top of PCle

e Protocols

O

CXL.io: provides configuration, discovery,
etc.

CXL.cache: allow devices to coherently
access and cache host CPU memory

CXL.mem: allow host CPU to coherently
access cached device memory

Device types
o Type 1: CXL.io and CXL.cache
m e.g., smartNIC

o Type 2: CXL.io, CXL.cache and
CXL.mem
m e.g., GPUor FPGA

o Type 3: CXL.io, and CXL.mem
m e.g., memory expansion board

20


https://www.computeexpresslink.org/

Host

Three CXL Specifications

Host

DRAM

DRAM

CPU

CPU

Accelerator
(e.g., NIC,
GPU)

CPU

DRAM

1.1: CPU -> accelerator
access cache-coherent

CPU

Accelerator
(e.g., NIC,
GPU)

Host1 Host2
DRAM DRAM
CPU CPU

2.0: CPU <-> accelerator
access cache-coherent

CPU

Accelerator
(e.g., NIC,
GPU)

CPU

Accelerator
(e.g., NIC,
GPU)

3.0: P2P access
cache-coherent




What it means for Tanaka san's company .. °»

PROVIDER

e VM resources spread across entire
rack/cluster Host 1 Host 2

o Remote memory access with very low
performance penalty compared to local . . .
. H 1

PCle link

e Decoupling between compute nodes

(CPUs) and resource nodes (memory)
o Memory disaggregation

e Better scalability and resource

utilization
~
i ] H

Host 3 Host 4

22



Pond: a CXL-Based Memory Pooling System

e Pond: CXL-Based Memory Pooling Systems for Cloud Platforms

o Lietal., Virginia tech & Microsoft Azure
o ASPLOS 2023

e Research question: How can VMs efficiently use DRAM?

o DRAM is expensive (50% of hardware cost at Azure)
o Local memory node accesses faster than remote accesses
o  Cloud provider should not inspect what is running inside VMs

e Existing solutions
o Add substantial latency (~us)
o Require changes to the VM

23



Memory usage at Azure

Analysis of traces from 100 production clusters and 158 workloads
Consider CXL access to be similar to remote NUMA node access

Grouping memory of 16 CPUs together in a single pool achieves "sufficient"

DRAM saving while adding <100ns latency
o 7% DRAM saving, which corresponds to ~100M$ of savings

Overhead of pooling compared to same-NUMA node memory access
o  Within 5% for 40% of the workloads
o >25% for 21% of the workloads

~50% of all VMs touch less than 50% of their rented memory

o  We can allocate the remaining rented memory on a remote node ("zNUMA") with no
performance penalty

24



The Pond System

e Relyon CXL

o Pooled (remote) memory access with ns latency

e Predict VM memory allocation behaviour
o Is it ok to allocate memory on a remote CXL node?
o ML model LSonerBlades

. Workload SR
e Monitor memory access prediction , i B2
o To fix wrong predictions VM request ___ [EESV/V '

o <chedul (- — o Mitigation
o Based on hardware counters A1 o Manager

-------------------

————————————————————

--------------------

e Hardware changes il

Manager . o
o Implement a new EMC (External Memory Controller) oo

e Open-source: https://github.com/vtess/Pond

25


https://github.com/vtess/Pond

Performance evaluation

Slowdown > PDM [%)]

Simulate CXL on a 2 CPUs machine

o One CPU acts as a zNUMA node: cores offline, only memory is used

- N W A~ O

o
o4

Pond with CXL latency emulated
- At 222% (255ns)
~ At 182% (142ns)
20 40 60

Average Pool DRAM [%]

Model false positive rate
Performance Degradation Margin (PDM):
max acceptable slowdown

100

©
i

S

Required Overall DRAM [%]

Fixed 15% percentage of VM memory
with CXL latency at 182%

> > .
)

Pond with CXL latency at 222%

A 4

Pond with CXL latency at 182%

o]
w

8 16 32 64
Pool Scope [CPU Sockets]

Memory savings

26



CXL hardware

e CPUs
o Intel Sapphire Rapids
o AMD Zen 4 Epyc ("Genoa" and "Bergamo")
o  Arm Neoverse V2
o AmpereOne (https://amperecomputing.com/)

e FPGA

o Intel Agilex
o  Xilinx Adaptive Compute Acceleration Platforms Versal Premium lineup

e Memory module
o  Samsung Memory-Semantic SSD

e Complete Memory system

o Panmnesia (https://panmnesia.com/)
o Unifabrix (https://www.unifabrix.com/)

CXL 1.1 '

CXL 2.0 '

CXL3.0 '

27


https://amperecomputing.com/
https://panmnesia.com/
https://www.unifabrix.com/

Latest update!!! CXL 3.1 brings Trusted Execution support

e Enables Confidential Computing
Securely run workloads without exposing
data to untrusted party (OS, other VM, etc.)
Targets Trusted VMs (TVMs)

(@)

(@)

e TSP protocol
Extends CXL specification to include CXL
devices into the TVM trust boundary

(@)

| TEE

| capable |
| Initiator |

| TEE capable Host Host Host
| Memory Memaory

M M

|
TEE Security TEE Security 10 Bridge I
| Manager Manager Rootof E= |

— [TSM) Trust [TSM RoT) |7C)(L.mem CXL.io/FCle
N N o= |

CXLTSP cxLTsp  TransportSecurity  TransportSecurity
SecondarySession{d PrimarySession {CXLIDE} {PCle IDE}

3 ’ /@“ €
T hD,‘EVi(ESecuritv [ cxLmem | CxLio/PCle ||
| anager [DEM) [

| capable

| Target

M
[] Compenentin TEETCE SR | Memoary

Ij Componentnotin TEETCB
& == TSP SPDM secure PrimarySession keys [required)
@ TSP SPDM secure Secondan@ession(s) keys pre-shared from PrimarySession (optional)

@ CxL.mem TransportSecurity[i.e. CXLIDE] encryption keys [optional)
@== CXL.io/PCle TDISF link encryption keys (optional)
h Target-based memory encryption keys [optional |

@ Initistor-based memory encryption keys [optional)

28



CXL and disaggregated memory are hot topics

- ch
his My AMp
ort : Metq
rhas € eils ' | c rkin
NO compute ory — M \ unv RS wes, that S umber of publ RAM Oulq recyCIeg On reVO/Uti
gystem MET " 1 1o 1818 D . Petap ONhary
hat Can ) . XL Cou/d / ’ Sabe publ’shed - , Orth Of
e overnber 2 # m €lps Yember 1,
teraby umars A pub pest e Atn- n \(\(e\ Xeoﬂ prOV/ng p@rfOra P S er: fen N
By oris P wered DY 0 () o g Milliong of g
MG 82302 2\\)) eV e Ollars While
gcalable CPL° 7 i
00000 g ctual ation How CXL Is Set to Make
et n Al chip! xS A 0 Profound Impact on
Kored \ued @ "q | »e | “Data Centers
South tar‘-uP a \ - o The new Compute E i
ro p ertv S " i redfuce data cente'r cozz,s :1,;::'2222):;));;2:;2 fesetee
p A ermeY M1+ -Upda\ed 3 mon " ‘Ormance’ and introduce new rack-leve| architectures,
By Max ;\ o23W Tim Stammers | Mar 23, 2023 -



Concluding words

e Cloud providers need to understand their memory usages
to offer the best performance to their customers

-'E

- A E

)ﬁé"i:"a: .L ‘fL

)

e Memory disaggregation offers several advantages
o Better utilization ,&\.
o Better scalability
o Reduces costs

2

-
-

-
~

e CXL provides foundation for memory disaggregation

. . PCle

- - link
- pierrelouis@iij.ad.jp
||

30




