
Pierre Louis Aublin
IIJ Research Laboratory

2023年12月19日

Memory Management in the Cloud

Meet Tanaka san

● Software engineer at Super Infinity Cloud Provider (IaaS)

2

Tanaka san in charge of VM infrastructure

● VM allocation

● VM migration

● Efficient resource utilization

● Fault-tolerance

● Isolation and security

3

VM Memory usage example

4

Host 1 Host 2

Host 3 Host 4

Network link

Assumptions:
● Each host has 3 CPU cores

● At most 3 VMs machine per
host

A new VM needs to be allocated

5

Host 1 Host 2

Host 3 Host 4

Network link

New VM!

Where to allocate?

Migrate VMs

6

Host 1 Host 2

Host 3 Host 4

Network link

New VM!

Where to allocate?

Allocate new VM

7

Host 1 Host 2

Host 3 Host 4

Network link

New VM!

Success!

Is migration the solution?

8

● Need to move data/computation across
the cluster

● Interruption of service for the migrated
VMs

Host 1

Host 3 Host 4

Cluster is full; Memory stranding appears…

9

Host 1 Host 2

Host 3 Host 4

● Unused memory

● Cannot be used to allocate a new VM
○ "All cores have been rented, but

there is still free memory on the
server"

● Microsoft Azure reports >25% of stranded
memory

● Studies at Microsoft, Google, Alibaba
show 50% of memory is not utilized

Zhang et al., "Redy: Remote Dynamic Memory Cache", 2021

Li et al., "Pond: CXL-Based Memory Pooling Systems for Cloud Platforms", ASPLOS 2023

Let's solve memory stranding via memory pooling!

● Memory pooling
○ Dynamic memory allocation scheme
○ Divides system memory into blocks
○ Each block can be allocated to / reclaimed from a VM to follow memory usage

10

Host 3 Host 4 Host 3 Host 4 Host 3 Host 4

Where to store the reclaimed memory?

11

Host 3 Host 4

+

Network-attached memory

● Remote Direct Memory Access
○ Access a computer's memory from another computer
○ Operating System/CPU not involved
○ Low-latency operation

12

DRAM
NIC

CPU

DRAM
NIC

CPUTCP/IP

RDMA

● Access to VM reclaimed memory ("cold memory") incurs latency penalty
compared to DRAM access

VM memory access via RDMA

13

Host 3 Host 4 Host 5

RDMAScenario 1:
VM migration

RDMAScenario 2: no
VM migration

RDMA

Memory disaggregation

● Separate memory from the compute resources

● Memory of a single machine can be shared across a network of servers

● Improves memory utilization and scalability

14

Host 3 Host 4

RDMAScenario 2: no
VM migration

RDMA

Leap: a solution to manage remote memory

● "Effectively Prefetching Remote Memory with Leap"
○ Al Maruf and Chowdhury. Michigan university
○ USENIX ATC 2020

● Problem
○ Remote memory access is slow (μs compared to ns)
○ This slows down memory intensive applications
○ How do we choose which data to allocate remotely?

15
Host 1 Host 2

RDMA

Hot vs Cold memory pages

● Hot memory page
○ Frequent access
○ Move to faster, local memory for better performance

● Cold memory page
○ Infrequent access
○ Can be moved to slower, farther memory

16Host 1 Host 2

RDMA

Leap architecture

● Implemented in Linux kernel
○ Applications not modified

● Online prefetcher
○ Identify remote memory

accesses patterns

● Local cache
○ Avoid pollution
○ Increase cache hit rate

● https://github.com/SymbioticLab/Leap

17

https://github.com/SymbioticLab/Leap

Leap performance evaluation

● System setup
○ 56 Gbps Infiniband cluster
○ Each machine: 64 GB RAM, 2x Intel Xeon E5-2650 v2 (16 cores)

● Real-world benchmarks
○ PowerGraph, NumPy, VoltDB, Memcached

● Performance gain: up to 10x compared to Infiniswap, a state-of-the-art solution

18

Where to store the reclaimed memory? (Revisited)

19

Host 3 Host 4

+

● Compute-eXpress Link
○ Industry-backed open standard
○ https://www.computeexpresslink.org/

● High-speed cache-coherent
interconnect

○ Built on top of PCIe

● Protocols
○ CXL.io: provides configuration, discovery,

etc.

○ CXL.cache: allow devices to coherently
access and cache host CPU memory

○ CXL.mem: allow host CPU to coherently
access cached device memory 20

● Device types
○ Type 1: CXL.io and CXL.cache

■ e.g., smartNIC

○ Type 2: CXL.io, CXL.cache and
CXL.mem

■ e.g., GPU or FPGA

○ Type 3: CXL.io, and CXL.mem
■ e.g., memory expansion board

https://www.computeexpresslink.org/

Three CXL Specifications

21

DRAM

DRAM

CPU

CPU

Host

Accelerator
(e.g., NIC,

GPU)

1.1: CPU -> accelerator
access cache-coherent

DRAM

DRAM

CPU

CPU

Host

Accelerator
(e.g., NIC,

GPU)

2.0: CPU <-> accelerator
access cache-coherent

DRAM

DRAM

CPU

CPU

Host1

Accelerator
(e.g., NIC,

GPU)

3.0: P2P access
cache-coherent

DRAM

DRAM

CPU

CPU

Host2

Accelerator
(e.g., NIC,

GPU)

What it means for Tanaka san's company

● VM resources spread across entire
rack/cluster

○ Remote memory access with very low
performance penalty compared to local
DRAM

● Decoupling between compute nodes
(CPUs) and resource nodes (memory)

○ Memory disaggregation

● Better scalability and resource
utilization

22

Host 1 Host 2

Host 3 Host 4

PCIe link

Pond: a CXL-Based Memory Pooling System

● Pond: CXL-Based Memory Pooling Systems for Cloud Platforms
○ Li et al., Virginia tech & Microsoft Azure
○ ASPLOS 2023

● Research question: How can VMs efficiently use DRAM?
○ DRAM is expensive (50% of hardware cost at Azure)
○ Local memory node accesses faster than remote accesses
○ Cloud provider should not inspect what is running inside VMs

● Existing solutions
○ Add substantial latency (~μs)
○ Require changes to the VM

23

● Analysis of traces from 100 production clusters and 158 workloads

● Consider CXL access to be similar to remote NUMA node access

● Grouping memory of 16 CPUs together in a single pool achieves "sufficient"
DRAM saving while adding <100ns latency

○ 7% DRAM saving, which corresponds to ~100M$ of savings

● Overhead of pooling compared to same-NUMA node memory access
○ Within 5% for 40% of the workloads
○ >25% for 21% of the workloads

● ~50% of all VMs touch less than 50% of their rented memory
○ We can allocate the remaining rented memory on a remote node ("zNUMA") with no

performance penalty

Memory usage at Azure

24

The Pond System

● Rely on CXL
○ Pooled (remote) memory access with ns latency

● Predict VM memory allocation behaviour
○ Is it ok to allocate memory on a remote CXL node?
○ ML model

● Monitor memory access
○ To fix wrong predictions
○ Based on hardware counters

● Hardware changes
○ Implement a new EMC (External Memory Controller)

● Open-source: https://github.com/vtess/Pond

25

https://github.com/vtess/Pond

Performance evaluation

● Simulate CXL on a 2 CPUs machine
○ One CPU acts as a zNUMA node: cores offline, only memory is used

26

Model false positive rate
Performance Degradation Margin (PDM):

 max acceptable slowdown

Memory savings

CXL hardware

● CPUs
○ Intel Sapphire Rapids
○ AMD Zen 4 Epyc ("Genoa" and "Bergamo")
○ Arm Neoverse V2
○ AmpereOne (https://amperecomputing.com/)

● FPGA
○ Intel Agilex
○ Xilinx Adaptive Compute Acceleration Platforms Versal Premium lineup

● Memory module
○ Samsung Memory-Semantic SSD

● Complete Memory system
○ Panmnesia (https://panmnesia.com/)
○ Unifabrix (https://www.unifabrix.com/)

27

CXL 3.0

CXL 1.1

CXL 2.0

https://amperecomputing.com/
https://panmnesia.com/
https://www.unifabrix.com/

Latest update!!! CXL 3.1 brings Trusted Execution support

28

● Enables Confidential Computing
○ Securely run workloads without exposing

data to untrusted party (OS, other VM, etc.)
○ Targets Trusted VMs (TVMs)

● TSP protocol

○ Extends CXL specification to include CXL
devices into the TVM trust boundary

CXL and disaggregated memory are hot topics

29

Concluding words

● Cloud providers need to understand their memory usages
to offer the best performance to their customers

● Memory disaggregation offers several advantages
○ Better utilization
○ Better scalability
○ Reduces costs

● CXL provides foundation for memory disaggregation
at high speed (ns)

30pierrelouis@iij.ad.jp

PCIe
link

