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Takeaway from today’s talk -今日の話から学べること

■ Overview of machine learning -機械学習の概要
■ Machine learning pipeline in practice with an end-to-end project

エンドツーエンドプロジェクトによる実践的な機械学習パイプライン

■ Popular python tools  – 人気のある Pythonツール
Pandas, Scikit-Learn, MLflow, FastAPI

zdataset.com: A Guide to Machine Learning Pipelines and Orchest
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Material for today

■ “Hands-On Machine 
Learning with Scikit-Learn, 
Keras, and TensorFlow 3rd 
edition” by Aurélien Géron 
(2022)

■ Well written, easy to follow 
with notebooks

■ Low priors
■ Permissive apache license
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Why using Machine Learning: a paradigm shift

■ Let’s consider a spam filter:

■ Advantages of ML:

– Automated decision making (easy to update)

– No human priors (unicode abuse)

1)  Decide what a spam looks like: 
contains “free”, “credit card”,…

2)  Write a detection algorithm based on 
rules of 1)
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Machine learning problems in the real world

Unsupervised learningSupervised learning

■ E-mail spam 
detection

■ Image 
recognition

■ Traffic 
forecasting

■ House price
prediction

■ Data 
visualization

■ Compression

■ Credit card 
fraud 
detection

■ Recommender 
systems

Reinforcement learning

■ Autonomous agents

■ Robots

■ Optimization

Nisha Arya @ EJable.com: Three Types of Machine Learning
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Basic challenges of ML

■ Insufficient quantity of 
training data

■ Nonrepresentative 
training data

■ Poor-Quality data

■ Irrelevant features

■ Overfitting 
the training data

■ Underfitting 
the training data

Jeeva Saravanan @ Medium: How to Evaluate your Machine Learning model
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End-to-end ML project

■ Company gives us a dataset of district median house values

■ We are a recently hired data 
scientist in a real estate company

■ The company want to be able to 
predict district median house 
values

Features (X) Target (Y)ID
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Project overview

1)Look at the big picture – frame the problem

2)Get the data

3)Discover and visualize data to gain insights

4)Prepare data for ML algorithms

5)Select a model and train it

6)Launch, monitor and maintain
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Frame the problem

1)Supervised, unsupervised, reinforcement 
learning?

2)Task? Regression, classification, clustering,...?

3)Performance criterion?

4)Baseline? Human-level performance? Experts?
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■ Open-source Python library providing high-performance, easy-to-
use data structures and analysis tools

■ Key feature: DataFrame object for tabular data manipulation with 
integrated indexing

■ Core features:
– Data manipulation
– Data cleaning
– File handling
– Time series

■ Use case in ML:
– Data preparation
– Exploratory data analysis and visualization

Tool #1: Pandas for handling data

10 / 
22



2024-07-09Tech Trend Talk: Practical ML 101

Tool #2 : scikit-learn for Machine learning

■ Simple and efficient 
tools for predictive 
data analysis

■ Accessible to 
everybody, and 
reusable in various 
contexts

■ Built on Numpy, SciPy 
and matplotlib

■ Open source, 
commercially usable – 
BSD license
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Get the data

■ Parse the data
■ Take a quick look

– Type

– Missing Values

– Basic stats

■ Train-test split
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numerical features
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Select a model and train it

■ Train a model
Predict

■ Evaluate 
performance

■ Avoid overfit with 
cross-validation

■ Try out different 
models/parameters

■ Save with joblib
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Current challenges of ML

■ Explainability
■ Ethical and Social Implications
■ Resource Efficiency
■ Security and Privacy
■ Lack of “world model”: machines are stupid
■ Multimodal learning

– Type of data: graphs, images, text, ...

– Joint representation and decision making
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