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TL:DR of this talk

* Optimization algorithms solve problem instances individually,
but instances are strongly correlated in practice!

* We want to discover and exploit these correlations to
develop specialized and efficient solving algorithms

* Machine Learning is a great hammer for this problem

* lllustrative numerical results look pretty good
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Outline of this talk (if you're still listening)

1) We will practically see why Machine Learning for optimization
makes actual sense (it is not just drinking the 2024’s Kool-aid)

2) We will see general design paradigms of ML for optimization,
with practical examples from recent networking papers

3) We will discuss in greater technical detail two contributions on
the topic from my research group at Politecnico di Milano, Italy
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“Why care about Machine
Learning for Optimization?” *

* excerpt from a review | got for a submission at INFOCOM two years ago (the reviewer assigned me 1/5 and killed my paper)



Brief rundown on “optimization”

« We want to find the values for decision variables that optimize
an objective function while satisfying a set of constraints

Obj. Decision » Example: Knapsack problem

function variables  x; is 1 if object i is in the knapsack
« Maximize profit s.t. capacity constraint

n
max E DiZ;
1=1

n
s.t. Zwiwi <(C
i—1

Constraints z; €{0,1}, i=1,...,n
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Should you care about the general case?

IT’S » Suppose you're interested in solving a
OVER fancy new optimization problem...

* ... but you find that it is, in general,
computationally intractable

IT SNEVERBEEN MORE OVER THAN IT IS NOW |
|| TUCKER CARLSON ENTTITTEE] || .r— '

* However, if you focus on instances
with specific characteristics...

* ... you might be able to discover
interesting things!
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Example: Oblivious Routing

* Problem: find the best way to distribute network flows
irrespectively from the actual demands (hence, “oblivious”)

« Unfortunately, NP-Hard in the general case...
* ... but can be made tractable for certain topologies [1]

»\': L)‘\ /)\‘ y'\{
(/78 N\ 7] 2N
L‘ - —::.’.'_EA

Partially deployed FatTree Deterministic FatClique DRing

[1]S. Supittayapornpong et al., “Optimal Oblivious Routing for Structured Networks,” in INFOCOM, 2022
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Example: Traffic Engineering with ECMP

* Problem: find the best integer edge weights, such that traffic is
optimally distributed via equal-cost shortest paths

* Does not achieve optimal flow distribution in general...
e ... but it provably does for Clos networks [2]

[2] M. Chiesa et al., “Traffic Engineering with ECMP: an Algorithmic Perspective,” in ToN, 2017
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Example: RSA in Optical Networks

* Problem: route network flows through optical wavelengths that
must be contiguous over spectrum and continuous over paths

« Unfortunately, NP-Hard in the general case...

8/29/2024 Il Research Laboratory Seminar
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Example: RSA in Optical Networks
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e ... but optical networks have structure!
* How do we systematically exploit this? (Open question!)
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Your turn

Take 30 seconds to think about another
use-case where problem instances are, in
practice, strongly correlated!

8/29/2024 Il Research Laboratory Seminar
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Main takeaway

Real-world problem instances
stem from data distributions!
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State-of-the-Art in Optimization

. 2024, there exist a bunch of very efficient solvers...

A\ z/f (\ Google OR-Tools

'- X HIGHS A
@ FICO

. OPTIMIZATION
e ... but these solvers are tailored for the general case, and may
not work well for the problems we're interested in solving!

0o llwl
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State-of-the-Art in Optimization

 Of course, we can leverage specialized algorithms...

OR-Tools' Vehicle Routing
Solver:

A Generic Constraint-Programming Solver with Luca Accorsi! and Daniele Vigo® 3

Routing One Million Customers in a Handful of Minutes

Heuristic Search for Routing Problems (VRPs)

Concorde TSP Solver

Concorde is a computer code for the symmetric traveling salesman problem (TSP) and some related
network optimization problems. The code is written in the ANSI C programming language and it is
available for academic research use; for other uses, contact William Cook for licensing options.

e ... but designing them requires extensive domain knowledge
for discovering the special characteristics of a problem!
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The big question

Can machines autonomously learn
specialized algorithms from data?

8/29/2024 Il Research Laboratory Seminar
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Learning for Optimization
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A Taxonomy of ML for Optimization

1. End-to-End Learning
« We use ML to directly predict solutions for our problem

2. Learning Algorithm Configurations
* We use ML to provide “information” to an optimization algorithm

3. Learning Alongside Optimization
« We use ML to implement “subroutines” of a larger algorithm

[3]Y. Bengio et al., “ML for Combinatorial Optimization: A Methodological Tour D’Horizon” in EJOR, 2021
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End-to-End Learning

Problem
Instance

> ML » Solution

* We learn statistical relations between a problem instance and
decision variables (no optimization is happening!)
* e.g., in a Knapsack, high-value low-weight items are likely to be packed

+ Fast and scalable
- No performance guarantees
- Difficult to enforce hard constraints
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Premise: Multi-Commodity Flow

* Problem: given a network, a set of source-destination paths and a
traffic matrix, decide how to optimally distribute the traffic

* A classical objective is minimizing the maximum link utilization

Per-path split ratios dsg = 10Mbps  fap =1.0

Capacity requested by
min o« / the k-th demand
8.t Z fp=dr VkeK Capacity of link e

pEP;

/7
Z Z fpr<al, VeceFE

ke K pePj.ecp

fpr=>0 Vke K,Vpec Py
a>0

facs =0.0
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Example: DOTE [4]

 Goal: solve large-scale multi-commodity flow problems

* Idea: leverage differentiability of the objective with respect to a
solution to train a end-to-end a predictive neural network

e.g.,
fo Predictc ~ L£(X) = MLU()
_ Traffic matrix X . Neural ‘ flow splits ,  Differentiable
Dataset of traffic Network Objective

i P = f(X)
T |

Gradient descent with Bﬁ(f)
00

[4]Y. Perry et al., “DOTE: Rethinking (Predictive) WAN Traffic Engineering” in NSDI, 2023
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Learning Algorithm Configurations

Problem
Instance

— ML T > Algo ——>Solution

 Given a specific problem instance, a ML model predicts the
“optimal configuration” of an optimization algorithm.

* e.g., algo’s hyperparameters, warm-starting solution, ...
+ Can guarantee feasibility (and possibly optimality)
- Harder to train (Supervised Learning might not be possible)
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Example: TEAL [5]

* Problem: solve large-scale multi-commodity flow problems

* Idea: use ML to predict a tentative solution, then do local search
with ADMM to improve the solution and fix broken constraints

Machine Learning Local Search

I3 X
I T 1

e z
= ;°_+
f

y ;Z =y
+ ////
traffic FlowGNN Multi-agent ADMM traffic
demands| | (§3.2) RL(§3.3) (§3.4) | |allocations|

4 )

A\

LA

[5]Z. Xu et al., “Teal: Learning-Accelerated Optimization of WAN Traffic Engineering” in SIGCOMM, 2023
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Learning Alongside Optimization

Problem .
@ v//——) Algo »Solution
B

— . ML

* A ML model implements subroutines of a “master algorithm”
* e.g., mutation function in a GA, neighbour selection policy in a LS

+Very powerful
+ Can guarantee feasibility (and possibly optimality)
- Harder to train (Supervised Learning might not be possible)
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Example: DeeplS [6]
* Problem: learn problem-tailored neighbourhood selection
policies for Local Search algorithms

* Idea: train a neural net with Reinforcement Learning to do it
Move based on LSl

Neighbor «® Current | - Best improvement Chosen
,'O «® “ solution _ | - Firstimprovement neighbor
p , - Random selection
’ b /9 - Probabilistic selection
Initial ® -
solution ‘
m==\love based on DeepLs—)

Current N
solution AP

Final
solution Current

solution

DRL Agent

Chosen

neighbor
S

[6] Di Cicco et al., “DeepLS: Local search for network optimization based on lightweight deep reinforcement learning” in TNSM, 2023
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Takeaways

ML for optimization can be roughly divided in two:
1. Machine Learning only
2. Machine Learning integrated with classical algorithms

* Using only Machine Learning allows us to trivially leverage
massive hardware acceleration (GPUs, etc.), but enforcing
feasibility and performance guarantees is challenging

* ML + optimization allows us to build upon tens of years of
literature, at the price of a possibly more complex training
procedure and implementation
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15t Case Study:

Augmenting Local Search with
Reinforcement Learning

Il Research Laboratory Seminar
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Reference paper

108 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

DeepLS: Local Search for Network
Optimization Based on Lightweight
Deep Reintorcement Learning

Nicola Di Cicco ', Graduate Student Member, IEEE, Memedhe Ibrahimi', Member, IEEE,
Sebastian Troia ', Member, IEEE, and Massimo Tornatore ', Fellow, IEEE
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What the paper does

1. Learn problem-specific neighbor selection policies in Local
Search algorithms via Deep Reinforcement Learning

2. Use a special type of neural network with symmetries
(equivariant nets) for scaling to larger instances than training

8/29/2024 Il Research Laboratory Seminar
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Premise: Reinforcement Learning

* RL is a paradigm for solving generic decision-making problems

State s;

> Agent Action a;
> 7(s|a)

Reward 71y

Tt+1

Environment <
St+1

* The RL objective is maximizing the accumulation of rewards, i.e.,

m* = argmax, E [Zfzo T4 Tr]
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Premise: Deep Reinforcement Learning

» State and action spaces might be too large for exact algorithms
* We can use NNs as universal function approximators!

 DRL algorithms generally follow this workflow:
1. Collect a bunch of experiences by running my(als) on the env
2. Update 6 using some pseudo-gradient

* e.g., Policy Gradient algorithms

1. >°7°, s total reward of the trajectory. 4. Q" (s¢,ay): state-action value function.

g=E Z\I}tvglogm(aﬂst) ’

o 2. >, e reward following action a;. 5. A"(st,a¢): advantage function.

. 3. Yo, v — b(st): baselined version of
where U; may be one of the following: previous formula.

6. 7 + V™(s¢41) — V7 (s:): TD residual.

[7]]). Schulman et al., “High-Dimensional Continuous Control Using Generalized Advantage Estimation” in ICLR, 2016
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Local Search as a DRL problem

Initial
solution

Current
solution

Neighbor
o | «®
A y®
f."". Current

solution

Final
solution

ﬁ)RL Agent

C

S &

O

.

\

» WO m(als)

J

mmmm\loVe based on DeeplL.S==p-

Chosen

neighbor
EEE—

» State: value of each decision variable + variable-specific features
* e.g., if variables are link weights, include link centrality and bandwidth

* Action: select which variable to perturb
* Reward: change in the objective function’s value

8/29/2024
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Permutation-equivariant neural nets

 Equivariant NNs are NNs with symmetry

* A set function f: XM - Y™ is permutation-equivariant if:
n(f(x)) = f(n(x)) for every permutation 7

* i.e., if we permute the ordering of the inputs, the same

permutation is reflected in the ordering of the outputs

| 0.01 "oy 0.99
. \\ . A .
" Equivariant ]

(]

L ‘ Equivariant > 0.01
. ﬂ i 0.05 ZQ) | NN ‘ |
P 0.05
0.99 =
AR,

8/29/2024 Il Research Laboratory Seminar
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Equivariant NNs for Local Search
* Problem: traffic engineering with ECMP

* Decision variables: link weights

Features for
each link

- St P(Clt|5t)ﬂ
0.90
m(als)
> EqUIvarlant < 0.05
1
0.01
\

* n. of links is arbitrary; n. of features per link is fixed

8/29/2024
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lllustrative numerical results

* Problem: traffic engineering with ECMP
* Objective: minimize the maximum link load

1.0

* DeeplS scales to instances up to
~4x larger than training

0.

oo

0.6

CDF

* DeeplLS outperforms competitive
et OSHF ML-based (MARL-GNN) and non
A (DEFO) algorithms

--- DEFO
R R LP

0.4

0.2

......

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Maximum Link Load
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lllustrative numerical results

* Problem: Routing and Spectrum assignment in optical networks
« Objective: maximize the n. of admitted requests

1.0 7 e
—— DeepLS = "

soeesy * DeeplS scales to instances up to
" i ~5x larger than training

3\ oWe' * DeeplS is on-par with a heavily
| . customized Genetic Algorithm

for RSA (GA-FF), at a fraction of
the complexity

00 [ rES = £
0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Blocking Rate
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Takeaways

* The performance of Local Search algorithms strongly depends
on the considered neighbour selection policy

* We can use Reinforcement Learning and simple neural networks
to autonomously learn the best neighbourhood selection
policy for a specific problem class

* Numerical results illustrate better or comparable performance
with respect to to handcrafted solutions
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2"d Case Study:

Machine Learning for Low-
Margin Optical-Network Planning

8/29/2024 Il Research Laboratory Seminar 38



Reference paper

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023 1293

Dual-Stage Planning for Elastic Optical Networks
Integrating Machine-Learning-Assisted
QoT Estimation

Matteo Salani ', Cristina Rottondi ™, Senior Member, IEEE, Leopoldo Cer€,

and Massimo Tornatore =, Senior Member, IEEE
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What the paper does

1. Use Machine Learning to model the Bit-Error-Rate of optical
signals in Elastic Optical Networks

2. Integrate the ML model with an ILP-based optimization
algorithm to forbid BER-unfeasible solutions

8/29/2024 [lJ Researc h Laboratory Seminar
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Premise: Elastic Optical Networks

* Wavelength-Division Multiplexing (WDM) optical networks
use a fixed spectrum grid -> spectrum underutilization

* Elastic Optical Networks use finer (e.g., 12.5 GHz) subcarriers,
with the possibility of using multiple modulation formats

50GHz 50GHz
< 50GHz e 50GHz > < ><¢

_____________

ettt | pobocodooodea ' :
: 4 . \ ; \
F I ex ! % ( ) ! -
. Ll : ! \
G ri d L] \ / 1
i F I/ N D D D B S $ 0 (- -------------<

------------------ 12.5GHz slot 100Gb/s

[8] M. Imran et al., “A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks” in COMST, 2017
8/29/2024 Il Research Laboratory Seminar 41



Premise: Quality-of-Transmission (QoT)

* A lightpath must be of sufficient “quality” to function properly

* Generally, we want an Optical Signal-To-Noise Ratio (OSNR)
achieving a low-enough Bit-Error-Rate (e.g., 1073 pre-FEQ)

* The OSNR at the receiver depends upon many things, including:
» Total path length and fiber types
« Nonlinear noise caused by the fiber’s Kerr effect
* Non-flatness of the amplifier’'s gain profile
* Filtering penalties
« Connector losses
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Premise; The Gaussian-Noise (GN) Model

* The GN Model is the current SoTA for optical-network planning
 Accurate and fast (it is just computing a formula!), but...

T T T T
" with ISRS

‘ T T I‘ T T T | T T T T ‘
a) without ISRS b)
39 - - 39 - -
— - — :
-—<|L-\l '—‘lr\l ‘ =
= 38| . = 38 Ly ha N .
S— S— - '..-
s} ) ' el
sl A 3, [ DN
o 37§ A . 37F S\
= 1. = faN
g _-' g A
S 361 : 5 361 -
% ' ] simulation, Gaussian % ® simulation, Gaussian
8 simulation, 64-QAM 8 simulation, 64-QAM K
— 35F  — integration — — 35F  — integration —
— —
Z Z

— — = closed-form, coherent (e # 0) — — = closed-form, coherent (e # ()

«++++ closed-form, incoherent (¢ = 0) -+ + closed-form, incoherent (e = 0)

34 - — 34 - 3

| I | I S Y N IR S N A SR B | [ | I | I N I N IR S I A S B | L |

-5 -2.5 0 2.5 5 -5 -2.5 0 2.5 5
Channel frequency f; [THz] Channel frequency f; [THz]

» ... It's a conservative approximation, resulting in large margins

[9] D. Semrau et al., “A Closed-Form Approximation of the Gaussian Noise Model...”, in JLT, 2019
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Machine Learning for QoT Estimation

* We treat QoT estimation as a classification problem
« We predict whether a lightpath will be OSNR-feasible or not

based on a general set of lig

ntpath features

Frequency slots

Links

—
Path length
N. of links

~ Max. link length

' >

Bitrate

Lightpath features

Frequency
—

8/29/2024

Network state features, e.g.,
L/R inter- Left/ right Left/ right
channel neighbor's neighbor's
spacing bitrate mod. format
ML model || > p(feasible)
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lterative RSA with Machine Learning

i - Yes
Build RSA Solve RSA ML ba_sed Are a_II LPs Solution
model model QoT estimator feasible?

Add constraints forbidding
unfeasible lightpaths

No

3 | 3| €9-suppose that LP 1
* We impose that LP 1
2 (2|11 3 |3 neighbors (LPs 2 anc

8/29/2024 Il Research Laboratory Seminar

Is unfeasible

and its closest
3) cannot be

simultaneously chosen

Do the same for all unfeasible LPs
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Savings [%]

]
o

lllustrative numerical results

 Baseline: margined reach tables for each path-modformat

N W ow AR O
o O O O o O
25.6

—_—
o o U

8/29/2024

25.8

34.2

35.1

38.8

41.3
40.9
42.7

3 .
MLI2ZA = MLIZB

22.6

22.9

42.9

1072 4 e e
~ - 1 i i
M~ o -5
o < < 10
<
10 -8
10~ 11 |
10~ 14 |
10~ 17 |
!
MARGINED MLI MLIZ2B
Inf. Inf. Average
Total Inf. ] Average
Framework Inst.  Lightp. MAX
Inst. Inst. BER
[%] [%] BER
MARGINED 13 0 0.00 0.00 191E-03 3.14E-05
6 7 MLI 78 19 21.59 0.21 5.59E-03 2.28E-04
MLI2ZB 80 1 0.01 3.32E-03 1.63E-04

Il Research Laboratory Seminar
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Takeaways

* In practice, optical networks operate subject to large QoT
margins, which can result in spectrum underutilization

* We can leverage data (field or testbed measurements) and ML
for accurately estimating the lightpaths’ QoT, enabling near-
zero margin optical-network planning

* Numerical results illustrate ~35% spectrum savings w.r.t.
conventional margined network planning approaches
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Challenges &
Research Opportunities

Il Research Laboratory Seminar
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Optimization Under Uncertainty

« Optimization under uncertainty is very well-studied

Deterministic Optimization Stochastic Optimization
min hgl(z . inf B [hs(z

I, '3( J Z 3 [ 'j( )] z ~ P
Robust Optimization Distributionally Robust Optimization
min max hg(z inf sup E" [hg(z

B zeZ 'Ij( ) 3 ;EEI [ -‘j( )] Z ~ P

Pe
A
zEZ s \

* The effectiveness of all of the above methodologies heavily
relies on a suitable model of parameter uncertainty
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Uncertainty Quantification

« Many ML algorithm can estimate predictive uncertainties
 Gaussian Processes, Quantile Regression, Conformal Prediction...

201

x10-7  PTS-CRC m=4 (this work)

=
o

Channel Gain
o
ot

====targef function

prediction

training data 20 credible region .0 T T T T T T T
T T T S | -30 -25 -20 -15 -10 -5 0 5
—2 0 2 4 6 8 10 t

0

How to best integrate ML uncertainty quantification with
methods from optimization under uncertainty?

[9] M. Zecchin et al., “Forking Uncertainties: Reliable Prediction...” in arXiv preprint, 2023
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Generalization

* “Learning without generalization is pointless” [3]

* It Is expected that a ML-based optimization algorithm is able to
generalize to problem instances “different” than training

* One aspect of generalization: scaling to large instances

How to design ML models and input representations that
enable consistent scalability to instances larger than training?

[3]Y. Bengio et al., “ML for Combinatorial Optimization: A Methodological Tour D’Horizon” in EJOR, 2021
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Generalization

» Generalization is closely related to instance distribution

How do we generate training data that covers the
distribution of instances we are interested in?

How can we enable generalization / fast adaptation to
instances from a data distribution different than training?
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Interpretability

» Operators are reluctant about using technologies they cannot
satisfactorily explain “why they work” to stakeholders

* Machine Learning models not only are black boxes, but they can
perform arbitrarily bad under "unlucky” or adversarial inputs

How to distill human-understandable, actionable algorithmic
insights from ML-based optimization algorithms?
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that's all folks
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