Learning-based Algorithms for Network Optimization

Nicola Di Cicco

IIJ Research Laboratory Seminar 13/08/2024

About me

Jeff set me up for this presentation. Help!

About me

I'm a 3rd year PhD student at Politecnico di Milano, Italy

TL;DR of this talk

- Optimization algorithms solve problem instances individually, **but instances are strongly correlated in practice!**
- We want to **discover and exploit these correlations** to develop **specialized and efficient solving algorithms**
- **Machine Learning** is a great hammer for this problem
- Illustrative numerical results look **pretty good**

Outline of this talk (if you're still listening)

- 1) We will practically see why **Machine Learning for optimization makes actual sense** (it is not just drinking the 2024's Kool-aid)
- 2) We will see **general design paradigms** of ML for optimization, with **practical examples from recent networking papers**
- 3) We will discuss in greater technical detail **two contributions on the topic from my research group** at Politecnico di Milano, Italy

"Why care about Machine Learning for Optimization?" *

* excerpt from a review I got for a submission at INFOCOM two years ago (the reviewer assigned me 1/5 and killed my paper)

Brief rundown on "optimization"

• We want to find the values for **decision variables** that optimize an **objective function** while satisfying a set of **constraints**

Should you care about the general case?

- Suppose you're interested in solving a fancy new optimization problem…
- … but you find that **it is, in general, computationally intractable**

- However, if you **focus on instances with specific characteristics**…
- … you might be able to **discover interesting things!**

Example: Oblivious Routing

- **Problem**: find the best way to distribute network flows irrespectively from the actual demands (hence, "oblivious")
- Unfortunately, **NP-Hard** in the general case…
- **… but can be made tractable for certain topologies** [1]

[1] S. Supittayapornpong et al., "Optimal Oblivious Routing for Structured Networks," in INFOCOM, 2022

Example: Traffic Engineering with ECMP

• **Problem**: find the best integer edge weights, such that traffic is optimally distributed via equal-cost shortest paths

- Does **not** achieve optimal flow distribution in general…
- … but **it provably does for Clos networks** [2]

[2] M. Chiesa et al., "Traffic Engineering with ECMP: an Algorithmic Perspective," in ToN, 2017

Example: RSA in Optical Networks

• **Problem**: route network flows through optical wavelengths that must be contiguous over spectrum and continuous over paths

• Unfortunately, **NP-Hard** in the general case…

Example: RSA in Optical Networks

- ... but optical networks have structure!
- **How do we systematically exploit this?** (Open question!)

Your turn

Take 30 seconds to think about another use-case where problem instances are, in practice, strongly correlated!

Main takeaway

Real-world problem instances stem from data distributions!

State-of-the-Art in Optimization

• As of 2024, there exist a bunch of very efficient solvers…

• … but these solvers are tailored for the **general case**, and may not work well for the problems we're interested in solving!

State-of-the-Art in Optimization

• Of course, we can leverage **specialized algorithms**…

OR-Tools' Vehicle Routing

Solver:

A Generic Constraint-Programming Solver with **Heuristic Search for Routing Problems (VRPs)**

Routing One Million Customers in a Handful of Minutes

Luca Accorsi¹ and Daniele Vigo^{2, 3}

Concorde TSP Solver

Concorde is a computer code for the symmetric traveling salesman problem (TSP) and some related network optimization problems. The code is written in the ANSI C programming language and it is available for academic research use; for other uses, contact William Cook for licensing options.

• … but designing them requires **extensive domain knowledge** for discovering the special characteristics of a problem!

The big question

Can machines autonomously learn specialized algorithms from data?

Learning for Optimization

A Taxonomy of ML for Optimization

1. End-to-End Learning

• We use ML to directly predict solutions for our problem

2. Learning Algorithm Configurations

• We use ML to provide "information" to an optimization algorithm

3. Learning Alongside Optimization

• We use ML to implement "subroutines" of a larger algorithm

[3] Y. Bengio et al., "ML for Combinatorial Optimization: A Methodological Tour D'Horizon" in EJOR, 2021

End-to-End Learning

- **We learn statistical relations** between a problem instance and decision variables (no optimization is happening!)
	- e.g., in a Knapsack, high-value low-weight items are likely to be packed
- + **Fast and scalable**
- **No performance guarantees**
- **Difficult to enforce hard constraints**

Premise: Multi-Commodity Flow

- **Problem**: given a **network**, a set of **source-destination paths** and a **traffic matrix**, decide how to **optimally distribute the traffic**
- A classical objective is **minimizing the maximum link utilization**

Example: DOTE [4]

- **Goal**: solve large-scale multi-commodity flow problems
- **Idea**: leverage differentiability of the objective with respect to a solution to train a end-to-end a predictive neural network

[4] Y. Perry et al., "DOTE: Rethinking (Predictive) WAN Traffic Engineering" in NSDI, 2023

Learning Algorithm Configurations

- Given a specific problem instance, **a ML model predicts the "optimal configuration"** of an optimization algorithm.
	- e.g., algo's hyperparameters, warm-starting solution, …
- +**Can guarantee feasibility (and possibly optimality)**
- **Harder to train (Supervised Learning might not be possible)**

Example: TEAL [5]

- **Problem**: solve large-scale multi-commodity flow problems
- **Idea**: use ML to predict a tentative solution, then do local search with ADMM to improve the solution and fix broken constraints

[5] Z. Xu et al., "Teal: Learning-Accelerated Optimization of WAN Traffic Engineering" in SIGCOMM, 2023

Learning Alongside Optimization

- A ML model implements **subroutines** of a "master algorithm"
	- e.g., mutation function in a GA, neighbour selection policy in a LS

+**Very powerful**

- +**Can guarantee feasibility (and possibly optimality)**
- **Harder to train (Supervised Learning might not be possible)**

Example: DeepLS [6]

- **Problem**: learn problem-tailored neighbourhood selection policies for Local Search algorithms
- **Idea**: train a neural net with Reinforcement Learning to do it

[6] Di Cicco et al., "DeepLS: Local search for network optimization based on lightweight deep reinforcement learning" in TNSM, 2023

Takeaways

ML for optimization can be roughly **divided in two**:

- **1. Machine Learning only**
- **2. Machine Learning integrated with classical algorithms**
- Using only Machine Learning allows us to trivially leverage **massive hardware acceleration** (GPUs, etc.), but **enforcing feasibility and performance guarantees is challenging**
- ML + optimization allows us to **build upon tens of years of literature**, at the price of a possibly **more complex training procedure and implementation**

1 st Case Study:

Augmenting Local Search with Reinforcement Learning

Reference paper

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 1, FEBRUARY 2024

DeepLS: Local Search for Network Optimization Based on Lightweight Deep Reinforcement Learning

Nicola Di Cicco[®], Graduate Student Member, IEEE, Memedhe Ibrahimi[®], Member, IEEE, Sebastian Troia^t, *Member, IEEE*, and Massimo Tornatore^{to}, *Fellow, IEEE*

What the paper does

- **1. Learn problem-specific neighbor selection** policies in Local Search algorithms via **Deep Reinforcement Learning**
- **2. Use a special type of neural network with symmetries** (equivariant nets) for scaling to larger instances than training

Premise: Reinforcement Learning

• RL is a paradigm for solving generic decision-making problems

• The RL objective is maximizing the accumulation of rewards, i.e.,

$$
\pi^* = \mathop{\arg\max}_{\pi} \mathbb{E}\left[\textstyle{\sum}_{t=0}^T r_t ~\mathclose{\big|} \; \pi \right]
$$

Premise: Deep Reinforcement Learning

- State and action spaces might be too large for exact algorithms
- **We can use NNs as universal function approximators!**
- DRL algorithms generally follow this workflow:
	- 1. Collect a bunch of experiences by running $\pi_{\theta}(a|s)$ on the env
	- 2. Update θ using some pseudo-gradient
- e.g., **Policy Gradient** algorithms

$$
g = \mathbb{E}\left[\sum_{t=0}^{\infty} \Psi_t \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t)\right],
$$

where Ψ_t may be one of the following:

4. $Q^{\pi}(s_t, a_t)$: state-action value function. 1. $\sum_{t=0}^{\infty} r_t$: total reward of the trajectory.

- 2. $\sum_{t'=t}^{\infty} r_{t'}$: reward following action a_t .
- 3. $\sum_{t'=t}^{\infty} r_{t'} b(s_t)$: baselined version of previous formula.

5. $A^{\pi}(s_t, a_t)$: advantage function.

6. $r_t + V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$: TD residual.

[7] J. Schulman et al., "High-Dimensional Continuous Control Using Generalized Advantage Estimation" in ICLR, 2016

Local Search as a DRL problem

- **State**: value of each decision variable + variable-specific features • e.g., if variables are link weights, include link centrality and bandwidth
- **Action**: select which variable to perturb
- **Reward**: change in the objective function's value

Permutation-equivariant neural nets

- Equivariant NNs are **NNs with symmetry**
- A set function $f: X^M \to Y^M$ is **permutation-equivariant** if: $\pi(f(x)) = f(\pi(x))$ for every permutation π
- i.e., if we permute the ordering of the inputs, the same permutation is reflected in the ordering of the outputs

Equivariant NNs for Local Search

- **Problem**: traffic engineering with ECMP
- **Decision variables**: link weights

Probability of incrementing the weight of a link by 1

• n. of links is arbitrary; n. of features per link is fixed

Illustrative numerical results

- **Problem**: traffic engineering with ECMP
- **Objective**: minimize the maximum link load

- DeepLS scales to instances up to **~4x larger than training**
- DeepLS outperforms competitive ML-based (MARL-GNN) and non (DEFO) algorithms

Illustrative numerical results

- **Problem**: Routing and Spectrum assignment in optical networks
- **Objective**: maximize the n. of admitted requests

- DeepLS scales to instances up to **~5x larger than training**
- DeepLS is **on-par with a heavily customized Genetic Algorithm for RSA** (GA-FF), at a fraction of the complexity

Takeaways

- The performance of Local Search algorithms strongly depends on the considered **neighbour selection policy**
- We can use Reinforcement Learning and simple neural networks to **autonomously learn the best neighbourhood selection policy for a specific problem class**
- Numerical results illustrate **better or comparable performance with respect to to handcrafted solutions**

2 nd Case Study:

Machine Learning for Low-Margin Optical-Network Planning

Reference paper

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

Dual-Stage Planning for Elastic Optical Networks Integrating Machine-Learning-Assisted **QoT** Estimation

Matteo Salani[®], Cristina Rottondi[®], Senior Member, IEEE, Leopoldo Ceré, and Massimo Tornatore^D, Senior Member, IEEE

1293

What the paper does

- 1. Use Machine Learning to model the **Bit-Error-Rate** of optical signals in Elastic Optical Networks
- 2. Integrate the ML model with an ILP-based optimization algorithm to **forbid BER-unfeasible solutions**

Premise: Elastic Optical Networks

- **Wavelength-Division Multiplexing** (WDM) optical networks use a **fixed spectrum grid** -> spectrum underutilization
- **Elastic Optical Networks** use finer (e.g., 12.5 GHz) subcarriers, with the possibility of using **multiple modulation formats**

8/29/2024 IIJ Research Laboratory Seminar 41 [8] M. Imran et al., "A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks" in COMST, 2017

Premise: Quality-of-Transmission (QoT)

- A lightpath must be of sufficient "quality" to function properly
- Generally, we want an **Optical Signal-To-Noise Ratio** (OSNR) achieving a **low-enough Bit-Error-Rate** (e.g., 10−3 pre-FEC)
- The OSNR at the receiver depends upon many things, including:
	- Total path length and fiber types
	- Nonlinear noise caused by the fiber's Kerr effect
	- Non-flatness of the amplifier's gain profile
	- Filtering penalties
	- Connector losses

Premise: The Gaussian-Noise (GN) Model

- The GN Model is the current SoTA for optical-network planning
- Accurate and fast (it is just computing a formula!), but…

• ... it's a conservative approximation, resulting in large margins

8/29/2024 IIJ Research Laboratory Seminar 43 [9] D. Semrau et al., "A Closed-Form Approximation of the Gaussian Noise Model …", in JLT, 2019

Machine Learning for QoT Estimation

• We treat **QoT estimation as a classification problem**

• We predict whether a lightpath will be OSNR-feasible or not based on a general set of lightpath features

Iterative RSA with Machine Learning

- e.g., suppose that LP 1 is unfeasible
- We impose that LP 1 and its closest neighbors (LPs 2 and 3) cannot be simultaneously chosen
- Do the same for all unfeasible LPs

Illustrative numerical results

• **Baseline**: margined reach tables for each path-modformat

Takeaways

- In practice, optical networks operate subject to **large QoT margins**, which can result in **spectrum underutilization**
- We can leverage data (field or testbed measurements) and ML for accurately estimating the lightpaths' QoT, enabling **nearzero margin optical-network planning**
- Numerical results illustrate **~35% spectrum savings** w.r.t. conventional margined network planning approaches

Challenges & Research Opportunities

Optimization Under Uncertainty

• Optimization under uncertainty is very well-studied

• The effectiveness of all of the above methodologies heavily relies on a **suitable model of parameter uncertainty**

Uncertainty Quantification

- Many ML algorithm can estimate predictive uncertainties
	- Gaussian Processes, Quantile Regression, Conformal Prediction…

How to best integrate ML uncertainty quantification with methods from optimization under uncertainty?

[9] M. Zecchin et al., "Forking Uncertainties: Reliable Prediction…" in arXiv preprint, 2023

Generalization

- "Learning without generalization is pointless" [3]
- It is expected that a ML-based optimization algorithm is able to generalize to problem instances "different" than training
- One aspect of generalization: **scaling to large instances**

How to design ML models and input representations that enable consistent scalability to instances larger than training?

[3] Y. Bengio et al., "ML for Combinatorial Optimization: A Methodological Tour D'Horizon" in EJOR, 2021

Generalization

• Generalization is closely related to **instance distribution**

How do we generate training data that covers the distribution of instances we are interested in?

How can we enable generalization / fast adaptation to instances from a data distribution different than training?

Interpretability

- Operators are reluctant about using technologies they cannot satisfactorily explain "why they work" to stakeholders
- Machine Learning models not only are black boxes, but they can perform arbitrarily bad under "unlucky" or adversarial inputs

How to distill human-understandable, actionable algorithmic insights from ML-based optimization algorithms?

that's all folks