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About me

Jeff set me up for 
this presentation. 

Help!

8/29/2024 IIJ Research Laboratory Seminar 1



About me
I’m a 3rd year PhD student at 

Politecnico di Milano, Italy



TL;DR of this talk

• Optimization algorithms solve problem instances individually, 
but instances are strongly correlated in practice!

• We want to discover and exploit these correlations to 
develop specialized and efficient solving algorithms

• Machine Learning is a great hammer for this problem

• Illustrative numerical results look pretty good
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Outline of this talk (if you’re still listening)

1) We will practically see why Machine Learning for optimization 
makes actual sense (it is not just drinking the 2024’s Kool-aid)

2) We will see general design paradigms of ML for optimization, 
with practical examples from recent networking papers

3) We will discuss in greater technical detail two contributions on 
the topic from my research group at Politecnico di Milano, Italy
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“Why care about Machine 
Learning for Optimization?” *

* excerpt from a review I got for a submission at INFOCOM two years ago (the reviewer assigned me 1/5 and killed my paper)



Brief rundown on “optimization”
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• We want to find the values for decision variables that optimize 
an objective function while satisfying a set of constraints

• Example: Knapsack problem
• 𝑥𝑖 is 1 if object 𝑖 is in the knapsack

• Maximize profit s.t. capacity constraint



Should you care about the general case?
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• Suppose you’re interested in solving a 
fancy new optimization problem…

• … but you find that it is, in general, 
computationally intractable

• However, if you focus on instances 
with specific characteristics…

• … you might be able to discover 
interesting things!



Example: Oblivious Routing
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[1] S. Supittayapornpong et al., “Optimal Oblivious Routing for Structured Networks,” in INFOCOM, 2022

• Problem: find the best way to distribute network flows 
irrespectively from the actual demands (hence, “oblivious”)

• Unfortunately, NP-Hard in the general case…

• … but can be made tractable for certain topologies [1]



Example: Traffic Engineering with ECMP

• Problem: find the best integer edge weights, such that traffic is 
optimally distributed via equal-cost shortest paths
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[2] M. Chiesa et al., “Traffic Engineering with ECMP: an Algorithmic Perspective,” in ToN, 2017

• Does not achieve optimal flow distribution in general…

• … but it provably does for Clos networks [2]



Example: RSA in Optical Networks

• Problem: route network flows through optical wavelengths that 
must be contiguous over spectrum and continuous over paths
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• Unfortunately, NP-Hard in the general case…



Example: RSA in Optical Networks

• … but optical networks have structure!

• How do we systematically exploit this? (Open question!)
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Your turn

Take 30 seconds to think about another 
use-case where problem instances are, in 

practice, strongly correlated!
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Main takeaway

Real-world problem instances 
stem from data distributions!
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State-of-the-Art in Optimization

• As of 2024, there exist a bunch of very efficient solvers…
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• … but these solvers are tailored for the general case, and may 
not work well for the problems we’re interested in solving!



State-of-the-Art in Optimization

8/29/2024 IIJ Research Laboratory Seminar 15

• … but designing them requires extensive domain knowledge 
for discovering the special characteristics of a problem!

• Of course, we can leverage specialized algorithms…



The big question

Can machines autonomously learn 
specialized algorithms from data?
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Learning for Optimization
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A Taxonomy of ML for Optimization

1. End-to-End Learning
• We use ML to directly predict solutions for our problem

2. Learning Algorithm Configurations
• We use ML to provide “information” to an optimization algorithm

3. Learning Alongside Optimization
• We use ML to implement “subroutines” of a larger algorithm 
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[3] Y. Bengio et al., “ML for Combinatorial Optimization: A Methodological Tour D’Horizon” in EJOR, 2021



End-to-End Learning

• We learn statistical relations between a problem instance and 
decision variables (no optimization is happening!)
• e.g., in a Knapsack, high-value low-weight items are likely to be packed

+Fast and scalable

- No performance guarantees

- Difficult to enforce hard constraints
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Premise: Multi-Commodity Flow

• Problem: given a network, a set of source-destination paths and a 
traffic matrix, decide how to optimally distribute the traffic

• A classical objective is minimizing the maximum link utilization
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Example: DOTE [4]
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[4] Y. Perry et al., “DOTE: Rethinking (Predictive) WAN Traffic Engineering” in NSDI, 2023

• Goal: solve large-scale multi-commodity flow problems

• Idea: leverage differentiability of the objective with respect to a 
solution to train a end-to-end a predictive neural network



Learning Algorithm Configurations
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• Given a specific problem instance, a ML model predicts the 
“optimal configuration” of an optimization algorithm.
• e.g., algo’s hyperparameters, warm-starting solution, …

+Can guarantee feasibility (and possibly optimality)

- Harder to train (Supervised Learning might not be possible)



Example: TEAL [5]
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• Problem: solve large-scale multi-commodity flow problems

• Idea: use ML to predict a tentative solution, then do local search 
with ADMM to improve the solution and fix broken constraints

[5] Z. Xu et al., “Teal: Learning-Accelerated Optimization of WAN Traffic Engineering” in SIGCOMM, 2023



Learning Alongside Optimization
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• A ML model implements subroutines of a “master algorithm”
• e.g., mutation function in a GA, neighbour selection policy in a LS

+Very powerful

+Can guarantee feasibility (and possibly optimality)

- Harder to train (Supervised Learning might not be possible)



Example: DeepLS [6]
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[6] Di Cicco et al., “DeepLS: Local search for network optimization based on lightweight deep reinforcement learning” in TNSM, 2023

• Problem: learn problem-tailored neighbourhood selection 
policies for Local Search algorithms

• Idea: train a neural net with Reinforcement Learning to do it



Takeaways
ML for optimization can be roughly divided in two:

1. Machine Learning only

2. Machine Learning integrated with classical algorithms

• Using only Machine Learning allows us to trivially leverage 
massive hardware acceleration (GPUs, etc.), but enforcing 
feasibility and performance guarantees is challenging

• ML + optimization allows us to build upon tens of years of 
literature, at the price of a possibly more complex training 
procedure and implementation
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1st Case Study:

Augmenting Local Search with 
Reinforcement Learning
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Reference paper
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What the paper does

1. Learn problem-specific neighbor selection policies in Local 
Search algorithms via Deep Reinforcement Learning

2. Use a special type of neural network with symmetries 
(equivariant nets) for scaling to larger instances than training
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Premise: Reinforcement Learning

• RL is a paradigm for solving generic decision-making problems
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• The RL objective is maximizing the accumulation of rewards, i.e.,



Premise: Deep Reinforcement Learning
• State and action spaces might be too large for exact algorithms

• We can use NNs as universal function approximators!

• DRL algorithms generally follow this workflow:
1. Collect a bunch of experiences by running 𝜋𝜃 𝑎 𝑠  on the env

2. Update 𝜃 using some pseudo-gradient

• e.g., Policy Gradient algorithms
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[7] J. Schulman et al., “High-Dimensional Continuous Control Using Generalized Advantage Estimation” in ICLR, 2016



Local Search as a DRL problem
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• State: value of each decision variable + variable-specific features
• e.g., if variables are link weights, include link centrality and bandwidth

• Action: select which variable to perturb

• Reward: change in the objective function’s value



Permutation-equivariant neural nets
• Equivariant NNs are NNs with symmetry

• A set function 𝑓: 𝑋𝑀 → 𝑌𝑀 is permutation-equivariant if:

𝜋 𝑓 𝑥 = 𝑓 𝜋 𝑥  for every permutation 𝜋

• i.e., if we permute the ordering of the inputs, the same 
permutation is reflected in the ordering of the outputs
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Equivariant NNs for Local Search
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• Problem: traffic engineering with ECMP

• Decision variables: link weights

• n. of links is arbitrary; n. of features per link is fixed



Illustrative numerical results
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• Problem: traffic engineering with ECMP

• Objective: minimize the maximum link load

• DeepLS scales to instances up to 
~4x larger than training

• DeepLS outperforms competitive 
ML-based (MARL-GNN) and non 
(DEFO) algorithms



Illustrative numerical results
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• Problem: Routing and Spectrum assignment in optical networks

• Objective: maximize the n. of admitted requests

• DeepLS scales to instances up to 
~5x larger than training

• DeepLS is on-par with a heavily 
customized Genetic Algorithm 
for RSA (GA-FF), at a fraction of 
the complexity



Takeaways

• The performance of Local Search algorithms strongly depends 
on the considered neighbour selection policy

• We can use Reinforcement Learning and simple neural networks 
to autonomously learn the best neighbourhood selection 
policy for a specific problem class

• Numerical results illustrate better or comparable performance 
with respect to to handcrafted solutions
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2nd  Case Study:

Machine Learning for Low-
Margin Optical-Network Planning



Reference paper
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What the paper does

1. Use Machine Learning to model the Bit-Error-Rate of optical 
signals in Elastic Optical Networks

2. Integrate the ML model with an ILP-based optimization 
algorithm to forbid BER-unfeasible solutions
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Premise: Elastic Optical Networks
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[8] M. Imran et al., “A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks” in COMST, 2017

• Wavelength-Division Multiplexing (WDM) optical networks 
use a fixed spectrum grid -> spectrum underutilization

• Elastic Optical Networks use finer (e.g., 12.5 GHz) subcarriers, 
with the possibility of using multiple modulation formats



Premise: Quality-of-Transmission (QoT)

• A lightpath must be of sufficient “quality” to function properly

• Generally, we want an Optical Signal-To-Noise Ratio (OSNR) 
achieving a low-enough Bit-Error-Rate (e.g., 10−3 pre-FEC)

• The OSNR at the receiver depends upon many things, including:
• Total path length and fiber types

• Nonlinear noise caused by the fiber’s Kerr effect

• Non-flatness of the amplifier’s gain profile

• Filtering penalties

• Connector losses
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Premise: The Gaussian-Noise (GN) Model
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• The GN Model is the current SoTA for optical-network planning

• Accurate and fast (it is just computing a formula!), but…

• … it’s a conservative approximation, resulting in large margins
[9] D. Semrau et al., “A Closed-Form Approximation of the Gaussian Noise Model …”, in JLT, 2019



Machine Learning for QoT Estimation
• We treat QoT estimation as a classification problem

• We predict whether a lightpath will be OSNR-feasible or not 
based on a general set of lightpath features
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Iterative RSA with Machine Learning
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e.g., suppose that LP 1 is unfeasible

• We impose  that LP 1 and its closest 
neighbors (LPs 2 and 3) cannot be 
simultaneously chosen

• Do the same for all unfeasible LPs



Illustrative numerical results
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• Baseline: margined reach tables for each path-modformat 



Takeaways

• In practice, optical networks operate subject to large QoT 
margins, which can result in spectrum underutilization

• We can leverage data (field or testbed measurements) and ML 
for accurately estimating the lightpaths’ QoT, enabling near-
zero margin optical-network planning

• Numerical results illustrate ~35% spectrum savings w.r.t. 
conventional margined network planning approaches
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Challenges &
Research Opportunities



Optimization Under Uncertainty
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• Optimization under uncertainty is very well-studied

• The effectiveness of all of the above methodologies heavily 
relies on a suitable model of parameter uncertainty



Uncertainty Quantification

• Many ML algorithm can estimate predictive uncertainties
• Gaussian Processes, Quantile Regression, Conformal Prediction…
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[9] M. Zecchin et al., “Forking Uncertainties: Reliable Prediction…” in arXiv preprint, 2023

How to best integrate ML uncertainty quantification with 
methods from optimization under uncertainty?



Generalization

• “Learning without generalization is pointless” [3]

• It is expected that a ML-based optimization algorithm is able to 
generalize to problem instances “different” than training

• One aspect of generalization: scaling to large instances

How to design ML models and input representations that 
enable consistent scalability to instances larger than training?
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[3] Y. Bengio et al., “ML for Combinatorial Optimization: A Methodological Tour D’Horizon” in EJOR, 2021



Generalization
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• Generalization is closely related to instance distribution

How do we generate training data that covers the 
distribution of instances we are interested in?

How can we enable generalization / fast adaptation to 
instances from a data distribution different than training?



Interpretability

• Operators are reluctant about using technologies they cannot 
satisfactorily explain “why they work” to stakeholders

• Machine Learning models not only are black boxes, but they can 
perform arbitrarily bad under ”unlucky” or adversarial inputs

How to distill human-understandable, actionable algorithmic 
insights from ML-based optimization algorithms?
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that’s all folks
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