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A wise man once said

‘To look to the future we must first look back upon the
past. That is where the seeds of the future were planted.’

Albert Einstein
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This is a keyboard
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This is a keyboard

Where does it come from?
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A long time ago...
The typewriter was created

Figure: Sholes & Glidden, 1873
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Sholes & Glidden QWERTY layout
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The rise of QWERTY

Remington and Sons’ monopoly

▶ Remington and Sons: one of largest typewriter manufacturers

▶ Bought Sholes design

The QWERTY cartel

▶ QWERTY: not the only layout nor the best

▶ Remington & S. losing money to rivals w/ better designs

▶ 1893: merge with 4 other manufacturers to control market

▶ QWERTY became the de facto standard

▶ Early computers used typewriters
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This is a keyboard

Why is it structured like this?
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Decomposing the keyboard: the numpad
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Numpad history
Very useful for data entry (spreadsheet, etc.)

1914: tenkey adding machine 1951: UNIVAC-1 console

Structure of keyboards 10 / 51



Decomposing the keyboard: the arrow keys
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Numpad history
Originally used to move the cursor (pre-mouse era)

1976: HJKL on ADM-3A 1982: inverted T on LK201
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Decomposing the keyboard: the nav keys
Popularized by IBM Model M keyboard
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Decomposing the keyboard: the system keys
Vestige of old IBM PC
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Decomposing the keyboard: the modifiers
Originates from typewriters and teleprinters
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Decomposing the keyboard: the function keys
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This is a keyboard

How to use it?
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Touch typing: Fingers on the homerow
How to use a keyboard

Advantages

▶ Less finger/hand movements

▶ Speed

▶ Keep attention on task

▶ Less neck pain
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QWERTY is not the best layout

▶ Designed 150 years ago, for typewriters

▶ Fingers need to move a lot

▶ Pinky, weakest finger, used for important keys

▶ Left/right hand not balanced (e.g., average)

▶ Some difficult bigrams (e.g., cr, be)
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Keyboard problems

Problem #1

Most keyboards use an outdated layout: QWERTY

Problem #2

Some keys are unnecessary, misplaced, or for outdated
functionalities

Problem #3

Using a keyboard can lead to serious injuries (carpal tunnel
syndrome, arthritis, tendinitis, ...)
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This is a keyboard

Can we do better?
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A better keyboard



Ergonomic keyboard

Figure: Typematrix

▶ Ortholinear

▶ Enter/backspace in the centre

▶ Pinky keys easier to press

▶ Close mouse location

A better keyboard 23 / 51



Split keyboard

Figure: Kinesis Advantage 360

▶ More natural hand position: split and curved

▶ Thumb cluster

A better keyboard 24 / 51



How many keys do you need?

Figure: Cherry keyboard 105 keys

‘Perfection is achieved, not when there is nothing more to
add, but when there is nothing left to take away.’

Antoine de Saint-Exupéry
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Ten Key Less (TKL): 87 keys

Figure: Keychron K8
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65% keyboard: 68 keys

Figure: Ziyoulang T8 RGB
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60% keyboard: 60 keys

Figure: Happy Hacking Keyboard
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40% keyboard: 48 keys

Figure: OLKB Planck
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34 keys is all your need

Figure: Ferris sweep
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Where are my missing keys?
It’s all about layers

Change layer via a special key

A key press produces a different output depending on the current
layer. E.g., similar to SHIFT or CTRL

Layers can be persistent, one-tap, combo, etc.
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What is the best layout?
Metrics to compare layouts

Metric Description Example Target

Home keys lag 100

Left/Right soap 1.0

Sfb Same finger bigram: pressing two keys
in succession w/ same finger

fr 0

Rolls pressing two keys with one hand, and
third with other hand

our 100

Alternate alternate keys between hands and 100

Redirects one-handed trigram where direction
changes

sad 0
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Qwerty
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Dvorak
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Colemak-DH
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Halmak
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Recurva
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Layouts summary

Metrics (%) QWERTY Dvorak Colemak-DH Halmak Recurva

Home keys 25 57 62 61 56

Left/Right 1.3 0.8 0.9 1.0 0.9

Sfb 6.6 2.8 1.4 2.9 0.8

Rolls 37 39 46 38 48

Alternate 26 45 30 43 36

Redirects 13 3 11 4 6

Stats for English language
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Your own layout
Most layouts optimized for English writing

Give your inputs to a program

https://github.com/xsznix/keygen

Figure: Layout optimized for Rust

Metrics (%) QWERTY Dvorak Iren

Home keys 25 57 51

Left/Right 1.3 0.8 1.5

Sfb 6.6 2.8 2.6

Rolls 37 39 42

Alternate 26 45 25

Redirects 13 3 13

Stats for English language
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Figure: Layout optimized for the Rust programming language
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Palantir: Secure Keyboard Inputs



Palantir: Securing keyboard inputs

Industrial Espionnage Aimbots in Online Video
Games
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Root cause: inputs originate from untrusted world
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Trusted Execution Environment (TEE)
▶ Trusted, tamper-proof component on the computers

▶ provides security guarantees of code and data inside
▶ confidentiality
▶ integrity

▶ secure against strong attacker w/ access to both SW and HW
▶ examples: Intel SGX, ARM TrustZone, RISC-V Keystone
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Related work
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Palantir architecture

Challenges

Keys distribution and TEEs
attestation

Assumption

Keyboard tamper-resistant
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Hardware Prototype

Raspberry Pi Nano2 W
(Cortex-A)

Arduino Portenta C33
(Cortex-M)
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Preliminary results

UDP DTLS ratio

Throughput (scancode/s) 8000 2200 0.28
Latency (µs) 123 445 3.6x

Comparison

▶ Pro gamer: 10 actions per second

▶ Gaming mouse: 1000 updates per second

▶ Gamepad latency: 1.4ms
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Conclusion



Create your own keyboard 101

You need:
▶ PCB

▶ Microcontroller: RP2040-based

▶ Switches and keycaps

▶ Firmware: QMK, ZMK

You can get components at:

▶ Yushakobo, Akihabara: https://yushakobo.jp/

▶ https://shop.beekeeb.com/product

And then practice at:

▶ https://www.keybr.com/

▶ https://monkeytype.com/
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Conclusion

▶ Keyboards are ubiquitous

▶ But many of us use an antique design

▶ There are better alternatives to suit your needs

▶ main entrypoint for your ideas; require strong security

▶ We propose a novel way to secure keyboard inputs
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