
(Almost) Everything you always wanted to know
about keyboards but were afraid to ask

Pierre Louis Aublin

IIJ Research Laboratory

24 September 2024

1 / 51



A wise man once said

‘To look to the future we must first look back upon the
past. That is where the seeds of the future were planted.’

Albert Einstein

2 / 51



Outline

1. Keyboard origins and structure

2. A better keyboard

3. Research project: securing keyboard inputs

3 / 51



This is a keyboard

Origin of keyboards 4 / 51



This is a keyboard

Where does it come from?

Origin of keyboards 4 / 51



A long time ago...
The typewriter was created

Figure: Sholes & Glidden, 1873

Origin of keyboards 5 / 51



Sholes & Glidden QWERTY layout

Origin of keyboards 6 / 51



The rise of QWERTY

Remington and Sons’ monopoly

▶ Remington and Sons: one of largest typewriter manufacturers

▶ Bought Sholes design

The QWERTY cartel

▶ QWERTY: not the only layout nor the best

▶ Remington & S. losing money to rivals w/ better designs

▶ 1893: merge with 4 other manufacturers to control market

▶ QWERTY became the de facto standard

▶ Early computers used typewriters

Origin of keyboards 7 / 51



This is a keyboard

Why is it structured like this?

Structure of keyboards 8 / 51



Decomposing the keyboard: the numpad

Structure of keyboards 9 / 51



Numpad history
Very useful for data entry (spreadsheet, etc.)

1914: tenkey adding machine 1951: UNIVAC-1 console

Structure of keyboards 10 / 51



Decomposing the keyboard: the arrow keys

Structure of keyboards 11 / 51



Numpad history
Originally used to move the cursor (pre-mouse era)

1976: HJKL on ADM-3A 1982: inverted T on LK201

Structure of keyboards 12 / 51



Decomposing the keyboard: the nav keys
Popularized by IBM Model M keyboard

Structure of keyboards 13 / 51



Decomposing the keyboard: the system keys
Vestige of old IBM PC

Structure of keyboards 14 / 51



Decomposing the keyboard: the modifiers
Originates from typewriters and teleprinters

Structure of keyboards 15 / 51



Decomposing the keyboard: the function keys

Structure of keyboards 16 / 51



This is a keyboard

How to use it?

Structure of keyboards 17 / 51



Touch typing: Fingers on the homerow
How to use a keyboard

Advantages

▶ Less finger/hand movements

▶ Speed

▶ Keep attention on task

▶ Less neck pain

Structure of keyboards 18 / 51



QWERTY is not the best layout

▶ Designed 150 years ago, for typewriters

▶ Fingers need to move a lot

▶ Pinky, weakest finger, used for important keys

▶ Left/right hand not balanced (e.g., average)

▶ Some difficult bigrams (e.g., cr, be)

Structure of keyboards 19 / 51



Keyboard problems

Problem #1

Most keyboards use an outdated layout: QWERTY

Problem #2

Some keys are unnecessary, misplaced, or for outdated
functionalities

Problem #3

Using a keyboard can lead to serious injuries (carpal tunnel
syndrome, arthritis, tendinitis, ...)

Structure of keyboards 20 / 51



This is a keyboard

Can we do better?

Structure of keyboards 21 / 51



A better keyboard



Ergonomic keyboard

Figure: Typematrix

▶ Ortholinear

▶ Enter/backspace in the centre

▶ Pinky keys easier to press

▶ Close mouse location

A better keyboard 23 / 51



Split keyboard

Figure: Kinesis Advantage 360

▶ More natural hand position: split and curved

▶ Thumb cluster

A better keyboard 24 / 51



How many keys do you need?

Figure: Cherry keyboard 105 keys

‘Perfection is achieved, not when there is nothing more to
add, but when there is nothing left to take away.’

Antoine de Saint-Exupéry

A better keyboard 25 / 51



Ten Key Less (TKL): 87 keys

Figure: Keychron K8

A better keyboard 26 / 51



65% keyboard: 68 keys

Figure: Ziyoulang T8 RGB

A better keyboard 27 / 51



60% keyboard: 60 keys

Figure: Happy Hacking Keyboard

A better keyboard 28 / 51



40% keyboard: 48 keys

Figure: OLKB Planck

A better keyboard 29 / 51



34 keys is all your need

Figure: Ferris sweep

A better keyboard 30 / 51



Where are my missing keys?
It’s all about layers

Change layer via a special key

A key press produces a different output depending on the current
layer. E.g., similar to SHIFT or CTRL

Layers can be persistent, one-tap, combo, etc.

A better keyboard 31 / 51



What is the best layout?
Metrics to compare layouts

Metric Description Example Target

Home keys lag 100

Left/Right soap 1.0

Sfb Same finger bigram: pressing two keys
in succession w/ same finger

fr 0

Rolls pressing two keys with one hand, and
third with other hand

our 100

Alternate alternate keys between hands and 100

Redirects one-handed trigram where direction
changes

sad 0

A better keyboard 32 / 51



Qwerty

A better keyboard 33 / 51



Dvorak

A better keyboard 34 / 51



Colemak-DH

A better keyboard 35 / 51



Halmak

A better keyboard 36 / 51



Recurva

A better keyboard 37 / 51



Layouts summary

Metrics (%) QWERTY Dvorak Colemak-DH Halmak Recurva

Home keys 25 57 62 61 56

Left/Right 1.3 0.8 0.9 1.0 0.9

Sfb 6.6 2.8 1.4 2.9 0.8

Rolls 37 39 46 38 48

Alternate 26 45 30 43 36

Redirects 13 3 11 4 6

Stats for English language

A better keyboard 38 / 51



Your own layout
Most layouts optimized for English writing

Give your inputs to a program

https://github.com/xsznix/keygen

Figure: Layout optimized for Rust

Metrics (%) QWERTY Dvorak Iren

Home keys 25 57 51

Left/Right 1.3 0.8 1.5

Sfb 6.6 2.8 2.6

Rolls 37 39 42

Alternate 26 45 25

Redirects 13 3 13

Stats for English language

A better keyboard 39 / 51

https://github.com/xsznix/keygen


Your own layout
Most layouts optimized for English writing

Give your inputs to a program

https://github.com/xsznix/keygen

Figure: Layout optimized for the Rust programming language

Figure: Layout optimized for Rust

Metrics (%) QWERTY Dvorak Iren

Home keys 25 57 51

Left/Right 1.3 0.8 1.5

Sfb 6.6 2.8 2.6

Rolls 37 39 42

Alternate 26 45 25

Redirects 13 3 13

Stats for English language

A better keyboard 39 / 51

https://github.com/xsznix/keygen


Your own layout
Most layouts optimized for English writing

Give your inputs to a program

https://github.com/xsznix/keygen

Figure: Layout optimized for Rust

Metrics (%) QWERTY Dvorak Iren

Home keys 25 57 51

Left/Right 1.3 0.8 1.5

Sfb 6.6 2.8 2.6

Rolls 37 39 42

Alternate 26 45 25

Redirects 13 3 13

Stats for English language

A better keyboard 39 / 51

https://github.com/xsznix/keygen


Palantir: Secure Keyboard Inputs



Palantir: Securing keyboard inputs

Industrial Espionnage Aimbots in Online Video
Games

Research project: securing keyboard inputs 41 / 51



Root cause: inputs originate from untrusted world

Research project: securing keyboard inputs 42 / 51



Trusted Execution Environment (TEE)
▶ Trusted, tamper-proof component on the computers

▶ provides security guarantees of code and data inside
▶ confidentiality
▶ integrity

▶ secure against strong attacker w/ access to both SW and HW
▶ examples: Intel SGX, ARM TrustZone, RISC-V Keystone

Research project: securing keyboard inputs 43 / 51



Trusted Execution Environment (TEE)
▶ Trusted, tamper-proof component on the computers
▶ provides security guarantees of code and data inside

▶ confidentiality
▶ integrity

▶ secure against strong attacker w/ access to both SW and HW
▶ examples: Intel SGX, ARM TrustZone, RISC-V Keystone

Research project: securing keyboard inputs 43 / 51



Trusted Execution Environment (TEE)
▶ Trusted, tamper-proof component on the computers
▶ provides security guarantees of code and data inside

▶ confidentiality
▶ integrity

▶ secure against strong attacker w/ access to both SW and HW

▶ examples: Intel SGX, ARM TrustZone, RISC-V Keystone

Research project: securing keyboard inputs 43 / 51



Trusted Execution Environment (TEE)
▶ Trusted, tamper-proof component on the computers
▶ provides security guarantees of code and data inside

▶ confidentiality
▶ integrity

▶ secure against strong attacker w/ access to both SW and HW
▶ examples: Intel SGX, ARM TrustZone, RISC-V Keystone

Research project: securing keyboard inputs 43 / 51



Trusted Execution Environment (TEE)
▶ Trusted, tamper-proof component on the computers
▶ provides security guarantees of code and data inside

▶ confidentiality
▶ integrity

▶ secure against strong attacker w/ access to both SW and HW
▶ examples: Intel SGX, ARM TrustZone, RISC-V Keystone

Research project: securing keyboard inputs 43 / 51



Trusted Execution Environment (TEE)
▶ Trusted, tamper-proof component on the computers
▶ provides security guarantees of code and data inside

▶ confidentiality
▶ integrity

▶ secure against strong attacker w/ access to both SW and HW
▶ examples: Intel SGX, ARM TrustZone, RISC-V Keystone

Research project: securing keyboard inputs 43 / 51



Trusted Execution Environment (TEE)
▶ Trusted, tamper-proof component on the computers
▶ provides security guarantees of code and data inside

▶ confidentiality
▶ integrity

▶ secure against strong attacker w/ access to both SW and HW
▶ examples: Intel SGX, ARM TrustZone, RISC-V Keystone

Research project: securing keyboard inputs 43 / 51



Trusted Execution Environment (TEE)
▶ Trusted, tamper-proof component on the computers
▶ provides security guarantees of code and data inside

▶ confidentiality
▶ integrity

▶ secure against strong attacker w/ access to both SW and HW
▶ examples: Intel SGX, ARM TrustZone, RISC-V Keystone

Research project: securing keyboard inputs 43 / 51



Trusted Execution Environment (TEE)
▶ Trusted, tamper-proof component on the computers
▶ provides security guarantees of code and data inside

▶ confidentiality
▶ integrity

▶ secure against strong attacker w/ access to both SW and HW
▶ examples: Intel SGX, ARM TrustZone, RISC-V Keystone

Research project: securing keyboard inputs 43 / 51



Related work

Research project: securing keyboard inputs 44 / 51



Palantir architecture

Challenges

Keys distribution and TEEs
attestation

Assumption

Keyboard tamper-resistant

Research project: securing keyboard inputs 45 / 51



Hardware Prototype

Raspberry Pi Nano2 W
(Cortex-A)

Arduino Portenta C33
(Cortex-M)

Research project: securing keyboard inputs 46 / 51



Preliminary results

UDP DTLS ratio

Throughput (scancode/s) 8000 2200 0.28
Latency (µs) 123 445 3.6x

Comparison

▶ Pro gamer: 10 actions per second

▶ Gaming mouse: 1000 updates per second

▶ Gamepad latency: 1.4ms

Research project: securing keyboard inputs 47 / 51



Preliminary results

UDP DTLS ratio

Throughput (scancode/s) 8000 2200 0.28
Latency (µs) 123 445 3.6x

Comparison

▶ Pro gamer: 10 actions per second

▶ Gaming mouse: 1000 updates per second

▶ Gamepad latency: 1.4ms

Research project: securing keyboard inputs 47 / 51



Conclusion



Create your own keyboard 101

You need:
▶ PCB

▶ Microcontroller: RP2040-based

▶ Switches and keycaps

▶ Firmware: QMK, ZMK

You can get components at:

▶ Yushakobo, Akihabara: https://yushakobo.jp/

▶ https://shop.beekeeb.com/product

And then practice at:

▶ https://www.keybr.com/

▶ https://monkeytype.com/

Conclusion 49 / 51

https://yushakobo.jp/
https://shop.beekeeb.com/product
https://www.keybr.com/
https://monkeytype.com/


Acknowledgements

▶ https://docs.google.com/document/d/1_

a5Nzbkwyk1o0bvTctZrtgsee9jSP-6I0q3A0_9Mzm0/

▶ https://bit.ly/layout-doc-v2

▶ https://www.youtube.com/watch?v=unMXQTSQEak

▶ https://www.youtube.com/watch?v=x7LQevYn7d0

▶ https://oxey.dev/playground/index.html

Conclusion 50 / 51

https://docs.google.com/document/d/1_a5Nzbkwyk1o0bvTctZrtgsee9jSP-6I0q3A0_9Mzm0/
https://docs.google.com/document/d/1_a5Nzbkwyk1o0bvTctZrtgsee9jSP-6I0q3A0_9Mzm0/
https://bit.ly/layout-doc-v2
https://www.youtube.com/watch?v=unMXQTSQEak
https://www.youtube.com/watch?v=x7LQevYn7d0
https://oxey.dev/playground/index.html


Conclusion

▶ Keyboards are ubiquitous

▶ But many of us use an antique design

▶ There are better alternatives to suit your needs

▶ main entrypoint for your ideas; require strong security

▶ We propose a novel way to secure keyboard inputs

Conclusion 51 / 51


	Origin of keyboards
	Structure of keyboards
	A better keyboard
	Research project: securing keyboard inputs
	Conclusion

