

IIJ Seminar

A brief look at cloud IBR

Ongoing work

Who am I

- ► Hello, I'm Nils 👋
- First year PhD Student @ University of Münster, Germany
- ► Interested in network telescopes and new approaches to them
- Advised by Ralph Holz

Network telescope (mis)-adventures

Internet Background Radiation (IBR) & network telescopes

- ► IBR describes all unsolicited traffic a host receives
- ► Mainly made up of three types:
 - Scans
 - DDoS backscatter
 - Misconfigurations
- ► Captured mainly by the use of darknets / Internet telescopes
 - Typically deployed in unused IP ranges of university networks → UCSD-NT, MERIT-NT
 - May introduce bias, other notable approaches:
 - ▶ Deployment in company networks (Bailey et al. 2005)
 - Deployment at IXPs (Wagner et al. 2023)
 - ▶ Deployment in CDNs (Richter & Berger 2019)
 - Deployment in public clouds (Pauley et al. 2023)

Idea(s)

- ▶ Different telescopes/ vantage-points provide different views
- Understanding which is best for specific observations
- ► Cloud-based approaches seem promising
 - ► Still unclear what the best way to operate them is
 - e.g. Holding time of an IP Address,
 - VM configuration,
 - economic perspective

When do we need which lense?

► current literature[™] dosn't provide clear answers yet

Approach - data collection

- ▶ Idea: Build a distributed, multi-cloud network telescope
 - configurable lifetime
 - provider agnostic
 - variable size

Current state:

- Build with Terraform as Infrastructure as Code (IaC)
- ▶ 5 cloud providers supported: AWS, GCP, Azure, Vultr, DigitalOcean
- Create 1 VM/ IP per "availability zone"
- approx. 300 VMs total

Approach - data collection

Cost consideration

Provider	Cost (IP/M)	Approach	
DigitalOcean	4.0\$	One VM per IP	
OVH	1.8\$	Leasing subnet	
AWS	7.5\$.5\$ One VM per IP	
Azure	9.0\$	One VM per IP	
Azure	4.8\$	Load balancer One VM per IP Load balancer	
GCP	8.5\$		
GCP	5.4\$		
Alibaba	3.8\$	VM with multiple IPs	
Vultr	3.5\$	One VM per IP	

Deployment - learnings

- ► Deploying a cloud-telescope is hard
 - ► All cloud-providers work a bit different
 - Destination IPs are often not directly linked to the interface (NAT)
 - Old software
 - Cloud-internal traffic

Deployment results

- ▶ Data collected over two weeks (April 3–17, 2025)
- ► Approx. 115k PCAP files
- Approx. 130M connections from 985k sources
- ► Stable Baseline of packets with notable variance

Deployment results

Deployment results

+		٠
sld	count	I
+	·	+
googleusercontent.com	16245123	ı
amazonaws.com	2920831	ı
linodeusercontent.com	2537175	ĺ
modat.io	2080634	ı
coop.net	2010113	l
censys-scanner.com	1872200	ı
hinet.net	1777494	ı
shadowserver.org	1466999	l
4cloud.mobi	1326969	ı
onyphe.net	1119946	ı
bufferover.run	990792	ı
internet-measurement.com	822108	ı
recyber.net	675361	I
4vendeta.com	564725	ı
stretchoid.com	515102	ı
deepfield.net	499842	ĺ
infornetnetwork.net.br	432905	ĺ
pacesettersports.com	392724	ĺ
tube-hosting.com	385923	ĺ
criminalip.com	357202	ĺ

Figure: Top source SLDs over all

+	-+	++
provider	sld	count
+	-+	++
DigitalOcea	n hinet.net	397806
DigitalOcea	n amazonaws.com	193928
DigitalOcea	n linodeusercontent.com	n 120140
aws	googleusercontent.com	n 3725330
aws	amazonaws.com	1063459
aws	hinet.net	745764
azure	googleusercontent.com	n 6210778
azure	4cloud.mobi	1212207
azure	linodeusercontent.com	n 898888
gcp	googleusercontent.com	n 5944100
gcp	amazonaws.com	852464
gcp	linodeusercontent.com	n 820235
vultr	hinet.net	475813
vultr	ip-94-23-87.eu	260690
vultr	googleusercontent.com	n 246134
+	-+	++

Figure: Top 3 source SLDs per provider

Future work - open questions

- ► Evaluate importance of cloud-telescope IP's history for IBR
- ► Evaluate traffic patterns across different regions and/or cloud-providers
- Evaluate best approach for cloud setup (e.g. responsiveness)
- ► Evaluate scanner behavior in cloud vs. "normal" telescopes

Current/ Future work

- Data enrichment:
 - ► OpenIntel reverse DNS data for source IPs
 - CAIDAs Hoiho for rDNS based geolocation
 - ► IPInfo geolocation
 - Routeviews prefix to ASN
- ► IDS scanner detection
- Filter cloud internal traffic
- Compare to other network telescopes

Future work - inspiration

- If you scan cloud address space you are likely to hit something
- Resource intensive scans could be more focussed and may not be seen in "normal" telescopes.
- ► Further investigation of cloud-scanner behavior is needed.

Questions?